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Abstract

Secret sharing is a cryptographic technique in which a dealer splits a secret into multiple
shares and distributes those shares among participating parties. In threshold secret sharing,
shareholders with a specified threshold of those shares can collaboratively reconstruct the secret.
Parties with access to a smaller, unqualified set of shares learn little or nothing about the original
secret if they collaborate.

A desirable property of secret sharing schemes is linearity, i.e. the secret is a linear combina-
tion of the shares. Linear secret sharing schemes can be employed in distributed protocols that
require some secret. In many distributed protocols, individual parties can compute a partial
result that can be combined into the final result using the linearity property.

As of now, many established (linear) secret sharing protocols operate over finite algebraic
structures like groups of prime order. This approach is su�cient for many practical problems
since the size of the structure can be chosen as required. Nevertheless, there are protocols,
like distributed exponentiation for RSA using secret sharing, where schemes over some finite
structure are infeasible. The parties would have to know the group size for reconstruction.
However, knowing the group size would break the security of RSA. Secret sharing over infinite
algebraic structures, in which no finite group size exists, is desirable, not only in a scenario like
this. It is particularly interesting if the group size is unknown before a protocol’s execution or
has to remain secret.

In this work, we present two threshold secret sharing schemes. The first is a continuous
linear secret sharing scheme over R. We prove the correctness and security of this scheme.

The second is an approximate linear scheme over Z, for which we prove correctness. Here,
approximate linear means that the scheme is linear up to some minor error.

We present a novel approach to linear secret sharing over Z and R by hiding secrets under
Gaussian distributed shares.

1



Contents

1 Introduction 3
1.1 Secret Sharing: A Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 What is Secret Sharing used for? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Di↵erent Kinds of Security Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Secret Sharing on Finite Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Integer Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 CRT-based schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5.3 Gaussian Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 8
2.1 Negligibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Security Definitions for Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Lattices and Discrete Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Gaussian Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Gaussian Linear Real Secret Sharing 14
3.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Adaptive Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Gaussian Approximate Linear Integer Secret Sharing 19
4.1 Correctness / Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Discussion and Comparison to existing protocols 21
5.1 Gap Between Reconstruction and Security Threshold . . . . . . . . . . . . . . . . . . 22
5.2 General Access Structure vs. Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Statistical Security vs. Perfect Secrecy . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Why Do We Need to Restrict the Interval of the Secret? . . . . . . . . . . . . . . . . 23
5.5 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.6 Verifiable Linear Integer Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Applications 24
6.1 Distributed Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.1 GLRSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.2 GALISS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 RSA & co. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Multi-Party Threshold Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Conclusion 27

2



1 Introduction

Consider the following scenario: An entity A possesses some secret m stored locally. In the event
that a third party M compromises A, m might be revealed to M . A can be considered the single

point of failure.
This problem gives rise to the notion of secret sharing. In secret sharing, the secret m is

distributed among a set of parties participating in the protocol. A robust secret sharing scheme
fulfills two properties: A qualified subset of the parties can collaborate to reconstruct the secret.
In contrast, an unqualified subset of parties learns nothing about the secret m. The determination
of qualified and unqualified parties is specific to the instance of the protocol being employed.

Coming back to our example: If M compromises A, who has secret-shared m, M will learn
nothing about the secret.

1.1 Secret Sharing: A Formal Definition

Concretely, a secret sharing scheme S is a set of algorithms (D, R). The dealer uses the distribution
algorithm D to split the secret m into partial information and distribute those parts to the n

participating parties of the protocol. Those pieces of information s1, . . . , sn are called shares of the
secret. We call a secret sharing scheme a (t, n)-threshold scheme, 1  t  n, if:

• R can reconstruct m e�ciently if it gets t or more shares as input.

• t� 1 shares reveal nothing about the secret.

1.2 What is Secret Sharing used for?

There are several types of secret sharing schemes [CSNN24] [Bei11]: Besides the previously defined
secret sharing schemes with threshold access structure, there are schemes with general access struc-
ture. For the latter, the dealer can choose what sets of parties can reconstruct the secret - not just
some t out of n parties. The advantages and disadvantages of both will be further discussed in
section 5. In addition, there is the category of verifiable secret sharing schemes, which are resistant
to cheating and dishonest secret sharing parties. Secret sharing schemes can also be very domain-
specific. There is, for example, DNA-based secret sharing in which DNA samples are shared with
participating parties [Adh06].

One straightforward application of secret sharing is removing the risk that an attacker ob-
tains sensitive information at a single point of failure. Sensitive information include secret keys,
passwords, medical information, or bank statements.

Besides this application, classical usages of secret sharing in cryptography include Byzantine
agreement, secure multiparty computations, threshold cryptography, access control, attribute-based
encryption, and generalized oblivious transfer [Bei11]. Moreover, secret sharing finds application
in blockchain, IoT, cloud storage, e-voting, etc. [CSNN24].

1.3 Di↵erent Kinds of Security Models

Coming back from the use cases of secret sharing, we want to discuss secret sharing itself in greater
detail.

Naturally, more than just providing a secret sharing algorithm is required when presenting a
new scheme. We have to prove that it is secure. However, security can be an ambiguous term, and
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di↵erent kinds of security models can be used to analyze secret sharing schemes. In general, an
adversary has many options for influencing the secret-sharing process, like manipulating the shares
that the dealer distributes or letting corrupted parties deviate from the protocol [PM14].

In the following thesis and in most of the literature the security of a secret sharing scheme
is analyzed towards an honest-but-curious attacker setting. [PM14] defines an honest-but-curious
adversary as follows:

”The [...] adversary is a legitimate participant in a communication protocol who will
not deviate from the defined protocol but will attempt to learn all possible information
from legitimately received messages.”

Besides defining security by what an attacker can do, there are di↵erent definitions of what can
be considered secure. While perfect secrecy implies that an attacker learns nothing about the
secret apart from what was known before protocol execution, schemes with statistical security

reveal a statistically negligible amount of information about the secret. Later, we will see that
linear integer secret sharing can only achieve statistical security and not perfect secrecy. However,
statistical security is already a strong notion since many well-known cryptographic protocols only
achieve computational security, which states that a protocol is secure against a computationally
bounded attacker. Statistically secure protocols are even secure against computationally unbounded
attackers.

1.4 Secret Sharing on Finite Structures

Now, we will look at basic secret sharing schemes and motivate integer secret sharing afterward.
The most prominent secret sharing scheme was introduced in Adi Shamir’s seminal paper ”How

to Share a Secret” [Sha79]. In this paper Shamir proposes the following method, called Shamir

secret sharing :

• For a (t, n) secret sharing scheme, a secret m, and a prime p > m,n, sample random coe�-
cients ai 2 Zp, set a0 = m and create the polynomial q(x) = at�1x

t�1 + ...+ a1x
1 + a0.

• Compute shares s1, . . . , sn as si = q(i) mod p.

• With t shares given, one can reconstruct the polynomial using Lagrange interpolation and
evaluate q(0) = m.

• Furthermore, if an attacker obtains t� 1 shares, m is still uniformly distributed on [0, p� 1].

We can see that the scheme uses modular arithmetic on the (finite) group Zp to perform computa-
tions.

An even simpler secret sharing scheme is additive secret sharing [add]. Additive secret sharing
is a (n, n)-secret sharing scheme. That means that all n shares must be combined to reconstruct
the secret. It works the following way:

• Let m be the secret. We choose some number p as our modulus.

• We uniformly draw numbers s1, . . . , sn�1 from Zp and set sn = m�
Pn�1

i=1 si mod p.

• Note that n parties can reconstruct the secret by adding all shares together: m =
Pn

i=1 si

mod p.
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• Furthermore if an attacker obtains n� 1 shares, any number 2 Zp is equally likely to be the
secret. There is exactly one number namely the missing share sk, s.t. (

P
i2{1,...,n}\k si) + sk

mod p = m. Because sk is uniformly distributed in Zp and Zp is a cyclic group the secret m
is also uniformly distributed.

Again, we use modular arithmetic on finite groups. In both schemes presented above, the posterior
distribution of the secret is the same as before protocol execution, i.e., an attacker learns nothing
about the secret. We have perfect secrecy.

For many applications, those ”finite” secret sharing schemes are su�cient since the group size
can be chosen arbitrarily large or the problem is of a finite/modular nature.

1.5 Integer Secret Sharing

Although secret sharing schemes that operate on finite groups may guarantee perfect security, they
have other drawbacks. In this thesis, we discuss one scheme that realizes integer secret sharing,
i.e., we perform integer, not modular, arithmetic.

Besides the purely academic interest in finding a secret sharing scheme that is not restricted to
finite groups, there are several reasons why integer secret sharing is desirable.

One reason is that general distributed exponentiation can be realized with integer secret sharing
schemes, while there might be construction issues or security risks with finite number secret sharing
[Tho09].

Distributed exponentiation means computing a
m, where m is a secret exponent that is secret-

shared among di↵erent parties, and a is some number in a (finite) group. In a (t, n) setting t

parties can use their shares to compute a
m together. In Shamir’s scheme, because it is linear, we

can reconstruct m =
Pt

i=1 ↵isi mod q, where ↵i are the Lagrange coe�cients that can be publicly
computed.

Distributed exponentiation is a crucial operation for public-key cryptography and is used in
the RSA algorithm [RSA78] or the Di�e-Hellman key exchange [DH76]. In the case of the RSA
algorithm, we want to compute a

m mod �(N), where �(N) is a number that is not prime and
not public (otherwise, breaking RSA is easy). However, now we cannot use a finite secret sharing
scheme like Shamir’s scheme that uses q = �(N) as a modulus since q has to be known to all parties
and prime [Tho09]. There exists workarounds that do not require integer secret sharing but which
[Tho09] weakens in his argumentation. We will discuss the distributed exponentiation problem in
detail in section 6.

By this example, we see that integer secret sharing is desirable for (distributed) protocols, in
which the group size is unknown before protocol execution or has to remain secret.

Note that we cannot just simply adjust finite schemes to be integer secret sharing schemes. For
instance, while Shamir secret sharing works well on finite sets, the scheme is broken on infinite
sets because there is no guarantee that inverses are defined on Z. However, Lagrange interpolation
requires the existence of inverses in the group regarding multiplication. Thus, we might not be able
to reconstruct the secret with interpolation. Furthermore, using integers might reveal information
about the secret, such as it’s parity [int].

1.5.1 CRT-based schemes

To our knowledge, the idea of sharing integers was first presented by Maurice Mignotte in 1982
[Mig82]. In his approach, he uses the Chinese Remainder Theorem (CRT) to show that a (t, n)
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secret sharing can be realized on the integers. It works the following:
For some integer secret ↵ < S < � bounded by integers ↵,�, find co-prime integers d1 < · · · < dn

s.t.

tY

i=1

di > � and
nY

i=n�t+2

di < ↵

Then, create n shares xi = S mod di. Since d1, . . . , dt are co-prime the CRT states that:

x ⌘ x1 mod d1

x ⌘ x2 mod d2

...

x ⌘ xt mod dt

has exactly one solution: x = s. This solution can be found using the extended euclidean algorithm
[Mig82], i.e., coe�cients z1, . . . , zt can be found s.t.

S = z1x1 + z2x2 + · · ·+ ztxt mod d1d2 . . . dt

For t� 1 parties, the secret is uniformly distributed between ��↵
d1...dt�1

values [Mig82].
As we can see, there are substantial restrictions on the scheme’s construction, especially about

how to come up with appropriate dj ’s. Most importantly, CRT-based schemes are non-linear in Z
since reconstruction happens modulus d1 . . . dt. This means that for every subset of t parties, the
group in which the scheme is linear in might di↵er because the factors d1 . . . dt could be di↵erent.
Similar problems arise in the CRT-based scheme presented by Asmuth and Bloom in the following
year [AB83] [NMH+18].

Now, note that CRT-based schemes achieve perfect secrecy but are not linear (in Z). In fact,
[Tho09] states and [CK93] proofs that for linear integer secret sharing schemes perfect secrecy is
unachievable.

1.5.2 Previous Work

One of the first researchers who came up with a linear integer secret sharing scheme that can
be used for tasks like distributed exponentiation were Ivan Damg̊ard and Rune Thorbek [DT06]
[Tho09]. They use general access structure secret sharing as described above. Therefore, they first
define that � is a set containing any subset of parties allowed to reconstruct the secret m. � is a
monotonous access structure, i.e., ; 62 � and � is closed under taking supersets [Tho09]. On the
other hand, � is the set containing all sets of parties forbidden to reconstruct the secret together.
� is the complement of � regarding the powerset of parties. The linear integer secret sharing
scheme (LISS) that they propose allows any set of parties 2 � to reconstruct the secret while any
set of parties 2 � are not able to reconstruct the secret. In contrast to a threshold secret sharing
scheme, we can design the access structure as we wish, i.e., we can specify which parties should be
able to reconstruct the secret, not just the number of parties.
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A dealer shares a secret m within a publicly known interval [�2�, 2�]. Then the dealer samples a
”distribution vector” r in [�2�0+k

, 2�0+k]e where �0 = �+dlog2(max(e� 1))e+1. k is the security
parameter (the bigger k the more secure the scheme). The dealer then shares the share vector:

s = (s1, . . . , sd)
T = Mr

If there are n parties, one party gets a fair amount of shares l s.t. ln = d. Here, M is a Matrix M
that a dealer must construct s.t.

• M 2 Zd⇥e
, ✏ = (1, 0, . . . , 0)T 2 Ze

• If A 2 � then 9� 2 Zd s.t. MT
A� = ✏

• If A 62 � then 9 2 Ze s.t. MM = 0 and h, ✏i = 1

MA denotes the rows of the Matrix M that correspond to the shares that the parties in a set A

have access to, and kmax = max{|a||a is an entry in some sweeping vector }. Furthermore, note
that the restriction hr, ✏i = m must hold. All sets of parties A 2 � can reconstruct the secret by
computing sTA�A = m.

To show that parties B 2 � should not be able to compute m, they show that the distribution of
the shares for two secrets in [�2�, 2�] and random coins rc, rc0 is almost identical since the statistical
distance between the distributions of the shares {si(m, rc, k)|i 2 B} and {si(m0

, rc0, k)|i 2 B} is
negligible in the security parameter k.

This way, Damg̊ard and Thorbek can solve the issues with distributed exponentiation. The
parameters of their scheme remain relatively big. Notice that for certain constructions of M ,
kmax 2 O(2n). Other constructions, with smaller kmax, have disadvantages in terms of construction
time complexity or local computation time [Tho09].

While LISS is a general access structure scheme, we present threshold secret sharing schemes
in this work. One might see this as a restriction, but threshold secret sharing is su�cient in many
use cases (comp. threshold cryptography).

1.5.3 Gaussian Distributions

In the schemes we are going to present, we will hide the secrets using Gaussian distributed shares.
One key feature of Gaussians is that they are invariant under rotation. That means if we rotate

samples of a Gaussian distribution, they still follow a Gaussian distribution. Our protocol will
stretch and rotate (matrix M) a vector r that follows a Gaussian distribution. This means Mr is
still Gaussian distributed. We will see that given shares Mr and a non-invertible M , there is still
some (Gaussian distributed) variance of r left. We will make use of this leftover randomness to
hide the secret m.

Since the publication of this paper and Thorbek’s Ph.D. thesis about Linear Integer Secret
Sharing (LISS), advancements in lattice-based cryptography have led to intensive research on dis-
crete Gaussians, analog to continuous Gaussians in a discrete setting. A lot of interesting properties
about them have been shown in the past two decades that will come in handy for integer secret
sharing, as presented in this thesis.
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2 Preliminaries

Now that we have introduced secret sharing and motivated our work, we provide the reader with
preliminary information necessary to understand the secret sharing scheme over Z and R with their
corresponding correctness and security proofs.

2.1 Negligibility

In cryptography, we are often not interested in proving that our protocol is perfectly secret, i.e.,
that an attacker learns nothing about the input we want to hide. It is usually su�cient to prove
that the attacker learns only a negligible amount of information. This means that the attacker only
learns information that does not practically help to decrypt a message or reveal a secret.

Definition 2.1 (Negligible Functions, [Bel97]). A function f(�) : N! R is negligible (in n) i↵

8c 2 N : 9�0 2 N : 8� > �0 : f(�)  �
�c

In other words: A negligible function must decrease asymptotically faster than the inverse of any

polynomial.

Lemma 2.1 (Addition of Negligible Functions, [HL]). If f(�) and g(�) are negligible functions

then f(�) + g(�) is a negligible function.

Lemma 2.2 (Polynomials and Negligibility). If f(�) is a negligible function and p(�) is a polyno-

mial then p(�) · f(�) is negligible.

Proof. Let p(�) be a degree c polynomial of form p(�) =
Pc

i=0 ai�
i. For all � � max{1, a0+· · ·+ac}.

p(�) =
cX

i=0

ai�
i 

cX

i=0

ai�
c = �

c
cX

i=0

ai  �
c
� = �

c+1

Now, let d be arbitrary. Let b = c+ d+1. We know because f(�) is negligible that for this b, there
must be some �0 such that for all � � �0: f(�)  �

�b. Let �0
0 = max{�0, 1, a0 + · · · + ac}. Then,

we have that for all � � �
0
0:

p(�)f(�)  p(�)��(c+d+1)

= p(�)��(c+1)
�
�d

 p(�)p(�)�1
�
�d

= �
�d

We conclude that f(�) · p(�) is negligible.

2.2 Security Definitions for Secret Sharing

There are di↵erent definitions of security in cryptography and secret sharing. In the following part,
we define the degree of security we want our secret sharing scheme to achieve. In order to get
a good grasp on what the desired security looks like, we define a cryptographic game. � is our
security parameter in the following and defines how many input bits we have.
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Definition 2.2 (Attacker). A secret sharing attacker At0,n is an algorithm that has access to some

t
0
out of n shares (typically t

0
< t, for a (t, n) secret sharing scheme) that stem from either one of

two self-chosen secrets and that returns a guess on which of the secrets corresponds to the shares.

Definition 2.3 (Secret Sharing Game). For a secret sharing scheme distribution algorithm D and

an attacker At0,n, we define the secret sharing game:

SS-GameD(At0,n,�)

b $ {0, 1}
M0,M1, i1, . . . , ik  At0,n([],�)

(s1, . . . , sn) D(Mb)

b
0  At0,n([si1 , . . . , sik ],�)

return b
0 == b

where M0,M1 are messages that the adversary can choose and D(M) returns the secret shares for

some shared secret M .  $ means sample uniformly at random from a set.

Intuitively, the game captures the following: The attacker chooses two messages M0,M1 and
chooses which parties to corrupt before protocol execution (non-adaptive). Then, the adversary
obtains the shares that the distribution algorithm D samples for a randomly selected message (from
M0,M1, the attacker does not know which one). Last, the attacker must guess to which message
the shares the attacker sees belong.

Definition 2.4 (Advantage). The secret sharing advantage Advss-game
D (At0,n,�) for some attacker

At0 and a secret sharing scheme D is defined as:

Advss-game
D (At0,n,�) =

��2 · Pr[SS-GameD(At0,n,�) returns true]� 1
��

If an attacker guesses b
0 uniformly at random, it wins the game with probability 1

2 , i.e., the
advantage is 0. The Advgame

A can be considered the advantage attacker A has to win the game
compared to a randomly guessing attacker.

Definition 2.5 (Threshold Secret Sharing Scheme). We call a secret sharing scheme S = (D,R)
a (t,n)⇤-secret sharing scheme if n shares are handed out by a dealer using the distribution

algorithm D and

• parties with access to t shares can reconstruct the secret with probability 1 by using the recon-

struction algorithm R.

• Advss-game
D (At0,n,�) is negligible for any polynomial time attacker At0,n, t

0
< t.

If the advantage of the secret sharing game is negligible, the attacker cannot distinguish the
shares of two self-chosen secrets. Note that we loosened our definition of secret sharing from
perfect secrecy to statistical secrecy because perfect secrecy is unachievable for linear integer secret
sharing schemes [Tho09]. After defining important properties that have to hold for our secret
sharing scheme, we now define a notion of distance that will be important to analyze the quantity
of security.
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Definition 2.6 (Statistical Distance Cont., [DMR18]). The statistical distance or total variation

distance between two continuous distributions A,B with their respective pdfs p(x), q(x) over some

set S ✓ Rn
is defined as:

sd(A,B) = 1

2

Z

x2S
|p(x)� q(x)|dx

Lemma 2.3 (Stat. Distance & Computational Indistinguishability). Let attacker At0,n obtain

secret sharing shares s = sj1 , . . . , sjt0 that correspond to one of two adversarial chosen secrets

M0,M1 with probability
1
2 respectively. Let sd(Ds0 , Ds1) be the statistical distance between Ds0 , Ds1,

where Dsi is the distribution of the shares given Mi, from the view of the attacker.

Now, let SS-Game’ be a slightly modified version of SS-Game. Namely, it is guaranteed that the

statistical distance sd(Ds0 , Ds1) is independent of the attackers choice of M0, M1 and the parties

i1, . . . , it0 to corrupt. In other words, for every output of the distribution algorithm, the statistical

distance is upper bounded by some constant c. Then the attacker At0,n against the security of the

SS-Game’ has a distinguishing advantage  c.

Proof. Intuitively we can see that the optimal attacker A⇤
t0,n does the following:

A⇤
t0,n(s = (sj1 , . . . , sjt0 ),�)

if Pr(s|M0) � Pr(s|M1)

return 0

return 1

Pr(s|Mi) means probability that we observe shares s given that the encrypted secret is Mi.
Now it becomes evident that Advss-game

S (A⇤
t0,n,�) = sd(Ds0 , Ds1) [Lau]. Because A⇤

t0,n is optimal,

8At0,n : Advss-game
S (At0,n,�)  sd(Ds0 , Ds1).

Remark 2.1. Note that this Lemma only applies if the statistical distance sd(Ds0 , Ds1) is indepen-
dent of the (random) processes in the distribution algorithm D. We will see why this is important

in the security proof for our secret sharing schemes.

2.3 Lattices and Discrete Gaussians

Switching from the continuous case to the integer case, we introduce the notion of lattices and
discrete Gaussians. Lattices can be considered some evenly spaced grid of points in Rn. The
simplest lattice is Zn. Lattices are an evenly spaced infinite discretization of Rn.

Definition 2.7 (Lattice, [BLP+13]). An n-dimensional (full-rank) lattice ⇤ ✓ Rn
is the set of all

integer linear combinations of some set of n linearly independent basis vectors B = {b1, . . . ,bn} ✓
Rn

:

⇤ = L(B) =

(
nX

i=1

zibi : z 2 Zn

)

The dual lattice of ⇤ ⇢ Rn
is defined as ⇤⇤ = {x 2 Rn : h⇤,xi ✓ Z}

Now, it is time to define discrete Gaussians. A discrete Gaussian is defined over a lattice and
can be thought of as a continuous Gaussian sampled at the points of the lattice. The definition
follows.

10



Definition 2.8 (Discrete Gaussian, [DKL+23] [AGHS13]). A discrete Gaussian (with mean 0)
over lattice ⇤ with parameter s > 0 is defined as follows:

8x 2 ⇤,D⇤,
p
⌃(x) =

⇢p⌃(x)

⇢p⌃(⇤)

where

⇢p⌃(x) = exp(�⇡xT⌃�1
x)

⇢p⌃(⇤) =
X

x02⇤
⇢p⌃(x

0)

Definition 2.9 (Smoothing Parameter, [DKL+23]). Given a lattice ⇤ and a positive real ✏ > 0,
the smoothing parameter ⌘✏(⇤) is the smallest real number s s.t. ⇢1/s(⇤

⇤{0}).

Informally, the number ⌘✏(⇤) denotes the smallest amount of Gaussian blur that hides the
discrete structure of the lattice when sampling from this distribution up to some error ✏ [CDLP14].

2.4 Gaussian Conditionals

In this section, we provide the reader with preliminary information about conditional distributions
of Gaussians. In particular, how some Gaussian r is distributed given Mr for some matrix M .

Lemma 2.4 (Gaussian Conditionals 1, similar to [DKL+23]). Let m,n be integers. Let ⌃ 2 Rn⇥n

be a positive definite matrix. Fix a full-rank matrix M 2 Rm⇥n
and let ⌃y = M⌃MT

and

W = ⌃MT (⌃y)�1
and ⌃e = ⌃� ⌃MT (⌃y)�1

M⌃.
If r ⇠ Dp

⌃,y ⇠ Dp⌃y
, e ⇠ Dp

⌃e
then

(r,Mr) ⇡D (Wy + e,y)

Where ⇡D means the two terms are identically distributed. One can also interpret this as: The

distribution of r conditioned on Mr = y is Wy + e.

Proof. Assume M has full rank. Trivially, ⌃y,⌃e are symmetric. Let:

k =


r

Mr

�

k0 =


Wy + e

y

�

Note that k and k
0 have expectation 0. We show that the covariance matrices are equal.

⌃1 = E
⇥
kkT

⇤

=


E
⇥
rrT

⇤
E
⇥
r(Mr)T

⇤

E
⇥
(Mr)rT

⇤
E
⇥
(Mr)(Mr)T

⇤
�

=


⌃ ⌃MT

M⌃ M⌃MT

�

11



and

⌃2 = E
h
k0k0T

i

=


WE

⇥
yyT

⇤
W

T +WE
⇥
yeT

⇤
+ E

⇥
eyT

⇤
W

T + E
⇥
eeT

⇤
WE

⇥
yyT

⇤
+ E

⇥
eyT

⇤

E
⇥
yyT

⇤
W

T + E
⇥
yeT

⇤
E
⇥
yyT

⇤
�

=


W⌃yW

T + ⌃e W⌃y

⌃yW
T ⌃y

�

Note that:

⌃e = ⌃� ⌃MT (⌃y)
�1

M⌃

= ⌃�WM⌃

(⇤)
= ⌃�W⌃yW

T

Proof of (⇤), use symmetry of ⌃y:

⌃yW
T = ⌃y(⌃M

T (⌃y)
�1))T

= ⌃y((⌃y)
T )�1

M⌃T

= ⌃y(⌃y)
�1

M⌃

Thus ⌃1 = ⌃2 and (r,Mr) ⇡D (Wy + e,y)

Lemma 2.5 (Gaussian Conditionals 2). Let m,n be integers. Let ⌃ 2 Rn⇥n
be a diagonal matrix

with entries �
2
. Fix a matrix M 2 Rm⇥n

and let ⌃y = M⌃MT
, W = ⌃MT (⌃y)�1

, and ⌃e =
⌃�⌃MT (⌃y)�1

M⌃. If e ⇠ Dp
⌃e
, and V a column permuted Matrix of V

0
where M

p
⌃ = UD(V 0)T

(SVD), then

⌃e = V


�
2 · In�m 0

0 0

�
V

T

Proof. [DKL+23] showed that for integers m  n, a full rank Matrix A 2 Rm⇥n, and A = USV
T

be the singular value decomposition of A, we have that:

A
T (AA

T )�1
A = V


Im 0
0 0

�
V

T

Now, if we substitute A = M
p
⌃ we get:

12



⌃e = ⌃� ⌃MT (M⌃MT )�1
M⌃

=
p
⌃
p
⌃�
p
⌃V


Im 0
0 0

�
V

T
p
⌃

=
p
⌃


In � V


Im 0
0 0

�
V

T

�p
⌃

=
p
⌃


V V

T � V


Im 0
0 0

�
V

T

�p
⌃

=
p
⌃V


In �


Im 0
0 0

��
V

T
p
⌃

=
p
⌃V


0 0
0 In�m

�
V

T
p
⌃

Let
p
⌃ = �I:

⌃e = �IV


0 0
0 In�m

�
V

T
�I

= V �
2


0 0
0 In�m

�
V

T

= V


0 0
0 �

2 · In�m

�
V

T

By permuting the columns of V, we get:

⌃e = V
0

�
2 · In�m 0

0 0

�
(V 0)T

which is a SVD of ⌃e. Thus, the first m� n singular values are �
2, and the last m singular values

are 0.

2.5 Miscellaneous

Now, we prove other lemmata that we will use in our security proof.

Lemma 2.6 (Jointly Gaussian Independence). Let s be a vector with entries si ⇠ N(0, 1) and V a

Matrix with orthonormal rows. Then the entries of Z = V s are independent and follow ⇠ N(0, 1).

Proof. First, we prove that for Z the entries Zi ⇠ N(0, 1). Let Cov(Z) = Cov((V S)(V S)T ) =
V ⌃V T , where ⌃ is the covariance matrix of S, and ⌃ = I. Because V V

T = I, Cov(Z) = I. To
prove the independence, note from the latter that Zi, Zj , i 6= j are uncorrelated and from [joi] that
all entries of Z are jointly Gaussian.
From Theorem 1 of [joi], we see that they are also independent.

13



Lemma 2.7 (An Upper Bound on Quadratic Forms). For any vector x 2 Rn
and a positive

semi-definite symmetric matrix ⌃ 2 Rn⇥n
it holds that:

xT⌃�1x  xT 1

�min(⌃)
Ix

Proof. Because ⌃ is symmetric, it can be decomposed into matrices AAT . Let A = UDV
T be the

singular value decomposition of A. Then, ⌃ = UD
2
U

T . Note that D
2 is a diagonal matrix with

the singular values of ⌃ on its diagonal.
Furthermore D

2 = �min(⌃)I + (D2 � �min(⌃)I).

xT⌃�1x = xT (UD
2
U

T )�1x

= xT
U(D2)�1

U
Tx

= (UTx)T (D2)�1(UTx)

substitute y = U
Tx

= yT (D2)�1y

= yT

✓
1

�min(⌃)
I +

✓
(D2)�1 � 1

�min(⌃)
I

◆◆
y

= yT 1

�min(⌃)
Iy + yT

✓
(D2)�1 � 1

�min(⌃)
I

◆
y

right term is negative semi-definite and U is unitary

 (UTx)T
1

�min(⌃)
I(UTx) = xT 1

�min(⌃)
Ix

3 Gaussian Linear Real Secret Sharing

In order to get an intuition of our proposal to use Gaussian distributions for integer secret sharing
and as a proof of concept, we first look at the continuous case and show how we can implement a
real-valued secret sharing. We call this scheme Gaussian Linear Real Secret Sharing (GLRSS).

Let parties P = {P1, . . . , Pk} get l shares each (lk = n). If we desire a (t, n)-secret sharing
scheme we construct it like this:
Let M 2 Rn⇥t be a full-rank Matrix with entries drawn i.i.d. from a Gaussian distribution and r
a multivariate Gaussian 2 Rt. Then, a dealer can construct a share vector s:

2

64
s1
...
sn

3

75 =

2

64
M1
...

Mn

3

75

2

64
r1
...
rt

3

75

Party Pi will get some shares sisisi = (si1 , ..., sil)
T where the sisisis form an equal partition on s. They

will also receive the corresponding rows Mi of the Matrix M .
Define g as the gap between the reconstruction threshold t and the security threshold t

0, i.e. t =
t
0 + g. In most cases, we want g = 1.

14



The secret m 2 Rg will be additively hidden by an extractor as a random Matrix multiplication,
G 2 Rg⇥t.

c = Gr+m

Each party also receives (G, c).

Theorem 3.1. Let m be in a publicly known interval [�2�, 2�], r ⇠ N(0,�2
rI), the entries of G,

Gij ⇠ N(0,�2
G), and M be a matrix with, Mij ⇠ N(0,�2

M ). If we choose �r = 22�, �G = 2�,
�M = 2n+�

, then GLRSS is a (t, n)⇤-secret sharing scheme, secure under non-adaptive attacks.

Here, non-adaptive means that the attacker has to choose the parties it will corrupt before the
protocol is executed, as defined in the SS-Game. We will discuss the adaptive case in Section 3.4.

Proof. In order to prove that GLRSS is a (t, n)⇤-secret sharing scheme, we first have to prove the
correctness of the scheme and then prove security.

3.1 Correctness

It is straightforward that parties with access to t shares can reconstruct the secret m. Let I ✓ [n]
be the set of indices that correspond to those shares. Let sI be the vector that comprises the t

shares and MI 2 Rt⇥t be the composition of the respective rows that created the t shares. Since
MI has full rank (elements of M and thus MI in R), we can compute M�1

I sI = r. Then, the parties
can compute c�Gr to obtain the secret m.

Note that computers don’t have infinite precision. Thus, we want to guarantee that for all
subsets I ✓ [n], the lowest singular value is su�ciently lower bounded, i.e., that we have Pr[�t(M) 
c]  ✏ for some constant c and some negligible function ✏ that we can choose. This is because we
want to ensure that the matrix M has full rank.

By [Nie21] for some specific MI we have that:

Pr[�t(M)  �M ✏t
�1]  ✏

We see that MI can be di↵erent for each I. Concretely, there are
�n
t

�
many matrices MI 2 Rt⇥t.

The binomial coe�cient is maximal if
� n
n/2

�
. Now, using a union-bound argument, we see that:

Pr[9MI : �t(MI)  �M ✏t
�1] 

✓
n

n/2

◆
✏  2n✏

using the well-known fact about the central binomial coe�cient that
� n
n/2

�
 2n. Choosing ✏ =

2�(�+n) and �M = 2�+n su�ces for our purposes.

3.2 Security

Let MI0 2 Rt0⇥t be the Matrix corresponding to the attacker obtaining the shares sI0 2 Rt0 with
t
0
< t, I 0 ⇢ [n], |I 0| = t

0. MI0 is now a fat matrix, and we can’t invert it to obtain r.
We want to show that for two secrets in the interval [�2�, 2�], the ciphertexts are indistinguishable.
Let ⌃ be the Covariance matrix of r, where ⌃ = �

2
rIt. From Lemma 2.4 we get that the residual
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distribution of r is Dp
⌃e

with

⌃e = V


�
2
r · It�t0 0

0 0

�
V

T

= V


�
2
r · Ig 0
0 0

�
V

T

where V is an orthonormal matrix depending on MI0 .
Obviously, c follows a Gaussian distribution with E [c] = m. Now, we want to analyze the covariance
matrix ⌃̃ of c.

⌃̃ = Var[c] = Var[Gr+m] = Var[Gr] = Var[Ge]

= E
⇥
(Ge)(Ge)T

⇤
= GE

⇥
eeT

⇤
G

T = G⌃eG
T

= GV


�
2
r · Ig 0
0 0

�
V

T
G

T

= (GV P )(GV P )T , P =


�r · Ig 0

0 0

�

GV P is the following matrix, where gi is the ith row of G and vi is the ith row of V .

2

64
hg1,�rv1i . . . hg1,�rvgi 0 . . . 0

...
...

...
...

hgg,�rv1i . . . hgg,�rvgi 0 . . . 0

3

75

Now (GV P )(GV P )T :

2

6664

Pg
j=1hg1,�rvji2 . . .

Pg
j=1hg1,�rvjihgg,�rvjiPg

j=1hg2,�rvjihg1,�rvji . . .
Pg

j=1hg2,�rvjihgg,�rvji
...

...Pg
j=1hgg,�rvjihg1,�rvji . . .

Pg
j=1hgg,�rvji2

3

7775

Now, let G0 = G
�G

V1:g denotes the first g columns of V . We see that:

(GV P )(GV P )T = �
2
r�

2
G

"✓
G

0
V


Ig 0
0 0

�◆✓
G

0
V


Ig 0
0 0

�◆T
#

= �
2
r�

2
G

h�
G

0
V1:g

� �
G

0
V1:g

�T i

The entries of G0 follow N(0, 1).
Using Lemma 2.6 and the independence of all entries in G

0 we get that G
0
V1:g and (G0

V1:g)T

are g ⇥ g matrices with entries i.i.d drawn from N(0, 1) For simplicity we say G̃ = G
0
V1:g .
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Now, we want to analyze the singular values of the covariance matrix ⌃̃.

�i(⌃̃) = �i((GV P )(GV P )T ) = �
2
r�

2
G · �i

⇣
G̃G̃

T
⌘

Note that G̃G̃
T is a so called Wishart-Matrix and by using [TV09] we get that for all ✏ � 0:

Pr[�g(G̃G̃
T ) � ✏g

�1] � 1� ✏

We can choose ✏ appropriately (e.g. ✏ = 2�). If we combine our previous results, we get:

Pr[�g(⌃̃) � ✏�
2
r�

2
Gg

�1] � 1� ✏

Knowing the spectral bounds of ⌃̃ = Cov(Gr + m), we can calculate the statistical distance for
two secrets m0, m1. The Gr term acts as a mask for our secret such that we learn only negligible
information about the secret from the ciphertext.
We see that:

⌃̃ = (GV P )(GV P )T

substitute GV P by its SVD to obtain

= UDU
T

D
�1 =

1

�min(⌃̃)
I + (D�1 � 1

�min(⌃̃)
I)

Note that 1
�min

I is positive definite and (D�1 � 1
�min

) is negative semi-definite. We now want to
analyze the statistical distance between the ciphertext of two secrets m0 and m1. Proposition 2.1.
of [DMR18] shows that the statistical distance between two multivariate Gaussians c0 and c1 with
c0 ⇠ N(m0, ⌃̃), c1 ⇠ N(m1, ⌃̃) is:

sd(c0, c1) 
1

2

q
(m0 �m1)T ⌃̃�1(m0 �m1)

We can bound the statistical distance between c0, c1 using Lemma 2.7. Note that the term in the
following square root achieves its maximum if the secrets lie at the edge of the publicly known
interval, i.e. |m0 �m1| = [2�+1

, . . . , 2�+1]T = m⇤.
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Let’s also set 2�� = ✏ = �
�1
G . Then, for all secrets m0,m1:

sd(C0, C1) 
1

2

s
(m0 �m1)T

1

�min(⌃̃)
I(m0 �m1)

 1

2

s
(m⇤)T

1

�min(⌃̃)
I(m⇤)

 1

2

vuut
tX

i=1

2�+1 · 2�+1 · g
✏�2

r�
2
G

=
1

2

s
tg22�+2

�2
r

=
p
tg
2�

�r

This term is negligible in our security parameter � if we choose �r = 22�.
Now, stating that Advss-game

D (At0,n,�) is negligible for any attacker At0,n using Lemma 2.3, does not
instantly work. Notice that the bound on the statistical distance only holds if the lowest singular
value is big enough, as described in Remark 2.1. As stated above, we set ✏ = 2�� for the bound:

Pr[�g(⌃̃)  ✏�
2
r�

2
Gg

�1]  ✏

We call the event that the lowest singular value is too little ”�g(⌃̃)  c”. Recall that in the game
SS-Game’ it is guaranteed that the statistical distance sd(c0, c1) is independent of the random
processes in the distribution algorithm D. In our case, we assume that �g(⌃̃)  c does not happen,
i.e., we have an upper bound of sd(c0, c1) that always holds. Using a union bound, we see that:

Advss-game
D (At0,n,�)


���2 · Pr[SS �Game

0
S(At0,n,�) returns true [ ”�g(⌃̃)  c”]� 1

���


���2 ·

⇣
Pr[SS �Game

0
S(At0,n,�) returns true] + Pr[”�g(⌃̃)  c”]

⌘
� 1

���

=
��2 · Pr[SS �Game

0
S(At0,n,�) returns true]� 1

��+ 2 · Pr[”�g(⌃̃)  c”]

= Advss-game0

S (At0,n,�) + 2 · Pr[”�g(⌃̃)  c”]

= sd(c0, c1) + 2 · Pr[”�g(⌃̃)  c”]

This term is negligible in � using Lemma 2.1 and Lemma 2.2. Note that we always assume that �
is big enough s.t. the constant factors cancel out. Conclusively, through proofing correctness and
security, we have that GLRSS is a (t, n)⇤-secret sharing scheme.

3.3 Example

Let us have 20 parties P1, .., P20. Every party gets 1 share. The shared secret lies in a publicly
known interval [�2�, 2�]. We want 10 parties to be able to reconstruct the secret (t = 10). The
attacker compromises 9 parties and obtains t0 = 9 shares. Given those shares, the ciphertexts c0, c1
where ci = Gr +mi, are statistically indistinguishable if �r = 22l and �G = 2l, i.e. the statistical
di↵erence between c0, c1 is negligible in �.
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3.4 Adaptive Case

Theorem 3.2. Let m be on a publicly known interval [�2�, 2�], r ⇠ N(0,�2
rI), the entries of G,

Gij ⇠ N(0,�2
G), and M be a matrix with, Mij ⇠ N(0,�2

M ). If we choose �r = 22�, �G = 2n+�
,

�M = 2n+�
, then GLRSS is a (t, n)⇤-secret sharing scheme, secure under adaptive attacks.

We have previously considered the non-adaptive case. That means that the attacker has to
choose the parties that it wants to corrupt before protocol execution. Now, we want to analyze
the adaptive case, i.e., the attacker can see public information (other than the bound in which the
secret lies), such as the ciphertext or rows of the Matrix M . One tactic is to choose the parties
whose rows of the Matrix M result in a mask Gr with minimal variance.

The proof is almost the same as for the non-adaptive case. There is one major change. For the
bound of the lowest singular value, we had that:

Pr[�g(⌃̃)  ✏�
2
r�

2
Gg

�1]  ✏

Now, the adversary can choose any subset of rows of the matrixM 2 Rn⇥t to obtain some compound
Matrix MI0 , i.e. ⌃̃ is di↵erent for all of those. Concretely, there are

�n
t0
�
many matrices MI0 2 Rt0⇥t.

Note that the binomial coe�cient is maximal if
� n
n/2

�
. We see, similarly to the reconstruction union

bound, that:

Pr[9⌃̃ : �g(⌃̃)  ✏�
2
r�

2
Gg

�1] 
✓

n

n/2

◆
✏  2n✏

Naturally, we have to set ✏ = 2�(n+�) instead of the previous 2��.
To account for this factor of 2n, we have to adjust �G or �r. If we choose �G = 2n+�, for

example, we achieve the desired statistical distance that is negligible in �. We can make the same
union bound argument as above and get that Advss-game⇤

D (At0,n,�) is negligible for the adaptive
secret sharing game SS-game*. As a drawback, we get share sizes with additional n bits.

4 Gaussian Approximate Linear Integer Secret Sharing

Now, we want to discuss the integer case. This scheme is called Gaussian Approximate Linear

Integer Secret Sharing (GALISS). In this work, we only discuss the proof for reconstruction, not the
security proof, even though we give motivation on how such a proof might look like. We want to
explicitly state that we do not guarantee the security of GALISS.

While working on this thesis, we discovered that integer secret sharing, using this construction,
turns out to be more complicated than we initially thought. This is mainly because it is not
guaranteed that the reconstruction matrix MI with integer entries has an inverse M�1

I with integer
entries (e.g., [2]�1 = [0.5]). This only happens ifMI is a unimodular matrix, i.e. det(MI) 2 {�1, 1}.
So we must guarantee that for all possible reconstruction matrices I ✓ [n] of size t⇥ t, det(MI) 2
{�1, 1}. To our knowledge, we cannot e�ciently sample such a random matrix. A remedy would
be to scale and round M

�1
I and then, when we reconstruct, get some scaled version of r with some

minor errors. However, this violates linearity, and thus, we have to consider the integer version as
an approximate linear integer sharing scheme. Let M 2 Zn⇥t, r 2 Zt, g 2 Zt. The dealer executes
this protocol, for some secret m 2 [�2�, 2�]:

• Sample the entries M from DZ,�2
M
.

19



• Check if M has full rank; otherwise, reject and sample again.

• Sample the entries of r and g from DZ,�2
r
and DZ,�2

g
respectively.

• Compute s = Mr and distribute the entries of s as shares to the parties.

• Compute c = hg, ri+m and publish c,g.

We now do not sample from continuous Gaussians but from discrete Gaussians defined over lattices
(Zt in our case). Furthermore, note that we only share one secret at a time 2 [�2�, 2�].

4.1 Correctness / Reconstruction

First, we want to prove that reconstruction works and that the scheme is correct. The reconstruction
algorithm does the following:

• Choose � su�ciently large (see below).

• t parties jointly compute M
�1
I 2 Rt⇥t, where I ✓ [n].

• M
⇤
I is the scaled and rounded inverse M

⇤
I = b� ·M�1

I e 2 Zt⇥t.

• compute r⇤ = bM
⇤
I sI
� e.

• Obtain the secret by computing m = c� hg, r⇤i.

Notice that now M
⇤
I is an integer matrix.

Proof. If we prove that r⇤ = r correctness follows trivially. Now:

M
⇤
I = b� ·M�1

I e = � ·M�1
I +�,� 2 [�1

2
,
1

2
]t⇥t

M
⇤
I sI = [� ·M�1

I +�]MIr

= � ·M�1
I MIr+�MIr

= � · r+�MIr

Note that the following implication holds:

k�MIrk <
�

2
) r = bM

⇤
I sI
�
e

We want to choose � s.t. the premise holds. Let �MI = e. Then, for any column at index c and
row at index r of e:

�1

2

tX

i=1

mij  erc 
1

2

tX

i=1
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Let e0 = �MIr = er. Then for all k, 1  k  t:
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such that the premise holds and we have that r⇤ = r. Note that the entries of r and M are upper
bounded (up to some negligible probability), and thus, we can choose � appropriately. To give
an exact value for �, we would need to know the variance of the normal distributions from which
the entries of M and r are sampled. Those variances need to be determined in a possible security
proof.

4.2 Security

We do not guarantee that GALISS is secure. A possible security proof is up to future work on
this topic. If a proof of security exists, it could look similar to the one for GLRSS. It has been
shown that discrete Gaussians in the ”smoothing regime” (comp. Def. 2.9) essentially behave like
continuous Gaussians [Pei16] [Reg04].

5 Discussion and Comparison to existing protocols

We have successfully proposed two secret sharing schemes that use Gaussian distributions to hide
a secret. We want to compare those protocols to existing ones and discuss interesting properties.
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5.1 Gap Between Reconstruction and Security Threshold

Note that we can vary the gap g between the reconstruction and security thresholds. This way, we
can share multiple secrets on behalf of having a bigger gap. In most cases, g = 1 will be the most
useful.

If we, for example, want to share 2 secrets, we have to choose gap g = 2. Otherwise, an
attacker with access to t

0 = t�1 could have a higher chance of distinguishing between secrets. One
possibility to share more than one secret while maintaining the same number of parties is to give
the parties bundles of shares. Now, the dealer wants to share g = 3 secrets; there are np = 10
parties altogether, and tp = 5 parties should be able to reconstruct the secret. Then one can set
n = np · g = 30, t = tp · g = 15. Note that tp� 1 = 4 parties now have access to t

0 = (tp� 1) · g = 12
shares. Thus, we have a gap of 3 between the security threshold and the reconstruction threshold
and still maintain the security that tp � 1 parties (not t � 1 shares) learn a negligible amount of
information about the secret. However, now the share sizes are bigger.

5.2 General Access Structure vs. Thresholds

While [Tho09] uses general access structures, i.e., the dealer can choose which parties should be
able to reconstruct the secrets, we use a threshold secret sharing scheme, i.e., any t parties can
reconstruct the secret.

The former has the advantage that, in practice, the dealer may be biased towards which parties
the dealer trusts more and which are less reliable [Tho09]. The dealer can then come up with
an access structure in which a smaller number of reliable parties and a larger number of not-so-
reliable parties can reconstruct the secret. However, the construction of the scheme is also more
complicated, as the matrix M with which [Tho09] [DT06] multiply their secret vector with has to
be constructed carefully, and its computation is time-consuming. This problem does not arise with
the threshold setting.

5.3 Statistical Security vs. Perfect Secrecy

Secret sharing schemes like Shamir’s scheme or additive secret sharing guarantee perfect secrecy,
meaning the distribution of the secret given the shares is the same as the distribution of the secret
without the shares. Our scheme only achieves statistical security.

We want to provide an intuition of why having perfect secrecy in a linear integer secret sharing
scheme is not achievable. The most important thing is that for a linear finite number secret sharing
scheme, we have that the linearity of the shares is given concerning mod q where q is the size of
the group. In this finite group, the secrets appear uniformly at random before protocol execution.
When the shares are linearly added to the secret with some coe�cient, they still seem uniformly
distributed in this group. One of the main reasons for this is that we use modular arithmetic and
that numbers bigger than q will be again projected to the finite group through the mod operation.
We can think of the operations as being ”circular” over this group.

However, with integer secrets, Z is not ”circular,” i.e., a uniform distribution (not even properly
defined on the integers) is not maintainable and we must rely on statistical security.
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5.4 Why Do We Need to Restrict the Interval of the Secret?

The infinite nature of Z is also why we have to restrict the interval of the secret if we want to
achieve statistical security.

The main idea in integer secret sharing schemes is that we hide the secret, i.e., some number
in Z with some high variance mask that is unknown to a set of unqualified parties but known to a
qualified set. If we have an interval where the secret lies, we must ensure that even for the secrets
at the edges of the interval, the variance �

2 of this mask is still large enough to hide the secrets
under the mask. If we do not have bounds on the secrets, the secrets can be infinitely far apart,
and therefore, we can’t find a corresponding mask with bounded variance �

2. In other words, the
variance must be infinitely large.

5.5 Linearity

Because we only do linear operations in our scheme, we have that GLRSS is a linear secret sharing
scheme, i.e., the secret is a linear combination of the shares. GALISS is not linear but approximately
linear. That means it seems linear, depending on the application. Note that Shamir or additive
secret sharing is also linear but over a finite group. As mentioned in the introduction, not all schemes
are linear. Linearity has desirable properties that we discuss in Section 6. Table 1 represents which
secret sharing schemes can achieve specific security definitions. Note again that linear secret sharing

non-linear linear

finite
perfect secrecy, e.g.
[BI05]

perfect secrecy, e.g.
Shamir’s scheme

countable
infinite

perfect secrecy, e.g.
CRT schemes

statistical security, dis-
cussed in [Tho09]

Table 1: Achievable security definitions for finite/infinite and linear/non-linear schemes

schemes over a countable infinite domain can only achieve statistical security if the interval of the
secret is restricted.

5.6 Verifiable Linear Integer Secret Sharing

So far, we have only considered an honest-but-curious scenario. That means the parties are inter-
ested in revealing the secret but don’t cheat or deviate from the protocol. Several secret sharing
schemes are verifiable, i.e., the parties can prove that they provided the correct input. Nevertheless,
how can the other participants know that party i did not cheat when i wants to keep their input
secret? Party i cannot just reveal its secret information in plain text.

This is not only a problem restricted to secret sharing but a general problem in cryptography.
How can we prove something without revealing the ”something”? The so-called zero-knowledge
proof is the most popular protocol type to prove that a party provided a correct quantity or
possesses some quantity without revealing the quantity.

Although a proof on how to make GALISS / GLRSS verifiable exceeds the scope of this thesis,
several ideas on how to make integer secret sharing and related protocols verifiable have been
provided in [Tho09]. Thorbek, for example, presents a distributed exponentiation protocol that
uses his scheme in which the parties prove in zero-knowledge that their contributions are correct.
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6 Applications

We will now discuss two possible applications for GLRSS and GALISS.

6.1 Distributed Exponentiation

Distributed exponentiation was motivated in the introduction. First, we want to show that for
some number a and secret m, parties with access to t shares can compute a

m with their shares.
We will present a successful protocol for GLRSS, which is linear, and show why this simple protocol
does not easily extend to the approximate linear case (GALISS). This illustrates the disadvantages
of an approximate linear secret sharing scheme. However, first, we want to show the correctness of
GLRSS. The proof is similar to the one in [Tho09].

6.1.1 GLRSS

Let us first discuss the continuous/real case. Let MI 2 Rt⇥t be the reconstruction matrix the t

computing parties have access to. By assumption, MI has full rank. Thus the parties can jointly
compute M

�1
I .

M
�1
I =

2

64
(m1)T

...
(mt)T

3

75

Let those r parties have access to l shares (lr = t). Then we can directly see that

sI =
X

1ir

(0, . . . , si1 , . . . , 0, . . . , sil , . . . , 0)
T =

X

1ir

s(i)

and each i party possesses s(i). Let gx be the xth row of G 2 Rg⇥t. Now, the secret can be
reconstructed by:

m = c�G(M�1
I sI) = c� (GM

�1
I )

X
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X
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Each party has access to M
�1
I , G and can thus compute:

2

64
hg1,m1i hg1,m2i . . . hg1,mti

...
...

...
hgg,m1i hgg,m2i . . . hgg,mti

3

75 s(i) =
X

1jl

2

64
hg1,mij isij

...
hgg,mij isij

3

75

Note that in our scheme we share secrets m1, . . . ,mg. We can share secret mz by computing:
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We get that:

a
mz =

a
cz

a

P
1ir

⇣P
1jlhgz ,mij isij

⌘

=
a
cz

Q
1ir a

P
1jlhgz ,mij isij

Let the parties provide aij = a
sij and note that hgz,mij i = ↵z,ij can be pre-computed by any

participating party. Thus, we finally get that:

a
mz =

a
cz

Q
1ir

Q
1jl a

↵z
ij

ij

Because all parts of the term are accessible to each party now, the parties can compute amz for any
of the secrets mz.
In summary, the protocol looks as follows:

1. The dealer secret-shares any secret m.

2. The parties agree on the secret at position z.

3. Every party computes aij = a
sij for each of the shares sij they have and posts them to the

other parties.

4. Every party can compute a
mz and ↵

z
ij
= hgz,mij i.

5. Every party can now compute a
mz by the formula above.

6.1.2 GALISS

Let us now have a look at what the integer case looks like. The biggest di↵erence is that we divide
by � in the end and round. As stated above, we show why we cannot simply extend the linear
scheme to the approximate linear scheme.
Let MI 2 Zt⇥t be the reconstruction matrix the t computing parties have access to. By assumption,
MI has full rank. Thus, the parties can jointly compute M

⇤
I as described above. For GALISS, let’s

just consider sharing one secret m. Note that we can compute:

a
m =

a
c

a
hg,b

M⇤
I
sI

� ei
=

a
c

ahg,ri

There is one problem now, namely that we have approximate linearity and not linearity anymore,

i.e., we cannot find factors ↵i s.t. hg, b
M⇤

I sI
� ei =

Pt
i=1 ↵isi. A remedy would be choosing a bigger

�:

gT
M

⇤
I sI = gT ([� ·M�1

I +�]MIr)

= gT (� ·M�1
I MIr+�MIr)

= �gT · r+ gT�MIr
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Choose � such that this equality holds:

kgT�MIrk <
�

2
) hg, ri = bhg,M

⇤
I sIi

�
e

The problem boils down to solving:

a
b hg,M⇤

I sI i
� e = a

hg,M⇤
I sIi·

1
�+� =

⇣
a
hg,M⇤

I sIi
⌘ 1

� · a�

for some � 2 [�1
2 ,

1
2 ]. Hence, a� 2 [ 1p

a
,
p
a]. The parties could compute

�
a
hg,M⇤

I sIi
� 1

� similarly

to the continuous case, but now we have a multiplicative overhead that we cannot get rid o↵ by
rounding.

6.2 RSA & co.

Distributed exponentiation is used in di↵erent protocols, like RSA, similarly to what [DT06] [Tho09]
did. In general, linear integer secret sharing is a good choice for protocols where the modulus might
not be prime or publicly known, as we analyzed in the introduction.

RSA and other protocols that depend on exponentiation are defined over cyclic groups in which
specific properties hold. For RSA, we have that for a so-called generator a of the group Z⇤

N , the
function f(s) = a

s mod N is bijective. Furthermore, it is conjectured to be exponentially hard
to compute s from f(s). If the so-called ”RSA-assumption” holds, the attacker of our distributed
exponentiation cannot obtain the shares of the parties that post their aij = a

sij ’s, i.e., the attacker
cannot obtain sij from aij .

However, GALISS does not seem to be an appropriate choice for RSA / distributed exponenti-
ation, since there is a multiplicative overhead as seen above.

6.3 Multi-Party Threshold Cryptography

There has been a recent interest in multi-party threshold cryptography. The distributed exponenti-
ation protocol is an example of threshold cryptography since it enables multiple parties to perform
operations like encryption, decryption, or signing jointly. Secret sharing is used to split up secret
information like private keys and distribute those shares amongst parties. A set of t (this is the
threshold) parties can perform the operation while t� 1 parties can not. Threshold cryptography
finds application in cloud computing, secure financial transactions, and other sensitive multi-party
protocols [Cac23]. Because of increased relevance, a NIST call has been opened 1. NIST is short
for ”National Institute of Standards and Technology,” an American authority that de-facto sets the
standards of which protocols are used in practice.

Now, we will discuss threshold signature schemes (TSS) in further detail. They are of practical
interest, for example, for consensus protocols in blockchain [Lee23]
For those unfamiliar with message signatures, a signature is a cryptographic tool to maintain the
integrity of messages. When a sender sends a message to some receiver, a signature that ensures
the integrity of the message is attached. Signatures are constructed so that it is exponentially hard
for a third party to come up with some alternative message and its corresponding signature, i.e.,
the signature is only forgable with negligible probability.
In a (t, n) setup, a TSS would look similar to this:

1https://csrc.nist.gov/projects/threshold-cryptography
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1. The dealer creates a verification key vk and a signing key sk.

2. While vk is public, the signing key is secret-shared amongst the participating n parties.

3. t parties can then come up with partial signatures that can be combined into a valid signature
s for a message m. Parties that receive the message can then verify the correctness of the
signature with the vk.

4. A set of t0 < t unqualified parties are, on the other hand, not able to forge a signature s
0 for

some message m
0 6= m

There is one exciting application of GALISS, which we will be working on beyond the scope of this
thesis.

There is an interest in coming up with a lattice-based threshold signature scheme. Compared to
protocols that depend on classical hardness assumptions, lattice-based problems like the Shortest
Vector Problem (GapSVP) [BLP+13] are proven to be secure under quantum attackers. RSA-
Signature protocols, for example, depend on a classical hardness assumption, namely that factoring
large prime numbers is hard on ordinary computers. However, it has been proven that factoring
large numbers is easy for quantum attackers (Shor’s algorithm).

Why can GALISS or some variation of the schemes be interesting in improving lattice-based
threshold schemes? On the one hand, if one chooses finite group secret sharing techniques like
Shamir’s scheme, one has to choose the modulus to be very high. This is because the Lagrange
coe�cients in the reconstruction might blow up the error noise [BS23][BGG+18]. On the other
hand, other integer secret sharing techniques end up with big share sizes [BS23]. For those linear
schemes, the share size is in ⌦(n). We believe that this share size can be decreased in favor of
GALISS being only approximate linear and want to analyze this further in future work.

7 Conclusion

In this thesis, we presented the two secret sharing techniques GLRSS and GALISS.
We discussed secret sharing and provided a formal definition of (t, n)-secret sharing. We learned

that there are di↵erent attacker models and types of secret sharing schemes that can be versatile
(e.g. [Tho09]) but also domain-specific (e.g. DNA-based secret sharing).

This work motivated integer secret sharing and drew applications like distributed exponentia-
tion, threshold crypto, and multi-party computation on the integers.

After providing the reader with necessary preliminaries on cryptography, lattices, spectral anal-
ysis, and Gaussians, we stated the distribution and reconstruction algorithms of GLRSS. GLRSS is
a preliminary stage of the integer case and demonstrates how we can use Gaussian distributions to
hide secrets in the smooth continuous case. As with all secret sharing schemes, we proved the two
most important properties of a secret sharing scheme: t parties can reconstruct the secret easily.
In contrast, t� 1 parties learn negligible information about the secret.

Then we delved into the integer case and saw that this scheme cannot be linear but approxi-
mately linear. However, we saw that this scheme is still correct. The security of GALISS has to be
discussed in future work.

Section 5 discussed interesting properties of the schemes, compared them to existing protocols,
and talked about the limitations of the scheme.
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In 6, we discussed applications of GLRSS and GALISS. By the example of distributed expo-
nentiation, we saw the upsides of a linear scheme and the drawbacks of an approximate linear
scheme.

Approximate linearity does not necessarily prevent distributed protocols from working, but we
saw cases in which approximate linearity causes problems. This happened because distributed
exponentiation requires linearity in the exponent, which caused us to have a multiplicative error
that we cannot overcome by rounding.

Conclusively, we presented novel secret sharing schemes over R and Z that are, to our knowledge,
the first linear integer secret sharing schemes over those structures that use Gaussian distributioned
shares. We expect that this work helps to improve parameters of future cryptographic protocols.
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