
Forks
Proseminar: Software Analytics

Niklas Britz

Advisors: Prof. Sven Apel,
Christof Tinnes

Saarland Informatics Campus,
Saarland University

Abstract. In Open Source Software, forking describes the act of creat-
ing a new repository by copying an old one.
This paper reflects on state-of-the-art research on forks. Perceptions and
principles of forking have substantially changed over the last few decades.
The developer community moved on from demonizing forks to the era
of GitHub, where forking is not only pleased but encouraged. The paper
discusses perceptions and stances towards forking and puts them into
a historical context. It includes explanations about the motivation and
processes behind forking. There is a distinction between Hard Forks and
Social Forks (according to Zhou et al. [13]), which will be elaborated on
in more detail. In addition, the paper contains information about the
success (factors) of forks and communication, which are part of modern
research in the field of forking.

1 Introduction

In Open Source Software, forking describes the act of creating a new repository
by copying an old one. Those new repositories, so-called forks, can be copies of
the original project or other forks. The process of forking a repository does not
require permission from the owner in OSS. “The right to fork open source code
is at the core of open source licensing” [7, p. 1].
The visualization of the repositories and the forking process looks like forking
paths or a fork.

Fig. 1. Simple Fork

2 Proseminar: Software Analytics

Forking developed from copying the source code manually to cloning the
repository with the press of a button. The stance towards forking twisted from
fear to encouragement. Not only did the perceptions around forking change, but
also the conduction. Forking was primarily used to create a competing or super-
seding project [13]. A typical example of this type of fork would be LibreOffice,
a fork from OpenOffice.org.
Today developers use forking as a tool of interaction. Developers propose changes
or fix bugs through the creation of forks. This type of forking leads to greater
success of the project [2]. Jiang et al. [5] have shown that the percentage of forked
repositories had continuously increased before their research. That means that
forking is a crucial topic in OSS. Hence, taking a closer look at the subject is
very important.

2 Motivation and Processes behind Forking

2.1 Why Do We Fork?

In order to dive deeper into forking, one must have a look at the motivations and
reasons for the creation of forks that developers have. Jiang et al.[5], therefore,
surveyed developers in two rounds.
In the first round, they picked 1,000 developers who had forked 30 repositories
or more (GitHub). The researchers interviewed those developers via e-mail and
asked them why they had forked in the past. In the first round, the developers
answered open-ended. Most of them argued that they fork in order to submit
pull requests. That means their intention, after code changes had been made
locally on the fork, is to submit those changes to the original repository. The
owners of the upstream repository can then decide whether to accept or decline
the change. Another significant portion of developers answered that they wanted
to fix bugs and yet another wanted to add features. However, those categories
do not imply reintegration. Around 9 % of developers stated that they fork to
keep copies. The accurate figures can be seen in Table 1.
The researchers surveyed 3,000 developers who met the above criteria in the
second round. Here, the developers had to answer multiple-choice questions.

Cause
Developers in the

first round
Developers in the
second round

Submit pull requests 57 / 46 % 128 / 79 %

Fix bugs 45 / 36.3 % 125 / 77.2 %

Add features 27 / 21.8 % 112 / 69.1 %

Keeping copies 57 / 46 % 128 / 79 %

Other N/A 8 / 4.9 %

Table 1. Root causes of forking. Taken from [5, p. 554]

Forks Proseminar: Software Analytics 3

That explains the deviation from the first and second-round results. It explains
why the relative percentage of developers in each category is higher than in the
first round. The order of the root causes compared by their likeliness is still
maintained (Table 1).

2.2 How Do Developers Select Repositories?

Furthermore, the researchers Jiang et al. [5] asked the developers how they se-
lected the repositories they had forked. Just like the first question, the researchers
surveyed in two rounds. Again, the first question was open-ended and the second
one was multiple-choice. The results are displayed in Table 2. After evaluation,
the team found out that most developers find a repository by clicking on external
links. The websites developers mentioned most often were Twitter, Hacker News
and Reddit. A few developers found projects on RubyGems. More than half of
the developers found projects by searching for specific keywords and repositories
matching their requirements. The search engines that the surveyees mentioned
most often were Google and GitHub itself. Other ways of finding forkable repos-
itories are recommendations (e.g., GitHub explore page) and friends whom the
developers know (word of mouth, posts).

Mechanism
Developers in the

first round
Developers in the
second round

External links 72 / 58.1 % 107 / 66 %

Search 69 / 55.6 % 106 / 65.4 %

Friend 19 / 15.3 % 69 / 42.6 %

Recommendation 3 / 2.4 % 30/ 18.5 %

Other N/A 25 / 15.4 %

Table 2. Mechanisms through which developers find and fork repositories. Taken from
[5, p. 556]

3 Social Forks

In their paper, Zhou et al. [13] distinguish between Hard Forks and Social Forks.
They differ in their characteristics and implementation. First, Social Forks are
discussed.

3.1 Social Forks: Implementing Features and Reintegrating

Social Forks are “often created for short-term feature implementation” [13,
p. 446]. The researchers state that the intention when creating a Social Fork

4 Proseminar: Software Analytics

Fig. 2. Example of a Social Fork. Black: Upstream repository. Red: Fork. Dots: Com-
mits.

is to contribute the code changes back to the parent repository or to keep a
copy. Usually, developers fork at a certain point, make some changes (implement
features or fix bugs) and issue a pull request. The upstream repository owner
can either accept or decline the change. Social Forking is a relatively young phe-
nomenon that came up with the rise of GitHub. GitHub made it possible to fork
instantly and to communicate efficiently.

3.2 Significant Communication between Repository and Forks

In their paper “We are Family: Analyzing Communication in GitHub Software
Repositories and Their Forks”, Brisson et al. [2] looked at how communication
in software families works.
They defined a software family as a repository with its forks. The team analyzed
116,217,069 repositories they fetched from GHTorrent, a mirror of GitHub’s
REST API. They prepared the dataset by extracting software families that had
been collaborative (participated in a significant amount of pull requests or is-
sues), had had more than ten members and had been used for software devel-
opment (e.g., not personal repository). Then they mined pull requests (PRs)
and issues belonging to the respective repository. Additionally, they identified
repository users who committed to the repository or merged with it.
The team found out that there is significant communication (=̂ PRs and issues)
within software family members.
They defined PR from inside as the “PRs that have occurred within the reposi-
tory (via branching)” [2, p. 62]. At the same time, they defined PR with reposi-
tories of other family members as the “PRs that have occurred within the family
(via forking)” [2, p. 62]. After analyzing their sample, the researchers discovered
that 40.4 % of PRs were from inside and 59.6 % were with family members. So
there is ‘more’ communication between the family members than in the reposi-
tories themself. Almost half of the users, the researchers identified, contributed
to more than one repository in the respective families.

3.3 The Success of a Repository and the Role Communication
Plays

Now that the researchers assessed quantitative communication features, they
wondered how the communication affected the success of a repository. However,

Forks Proseminar: Software Analytics 5

how to measure success? Therefore, Brisson, Noei and Lyons [2] used the repos-
itory’s star count to indicate its success. Users give a star to a repository to
keep track of it, discover similar projects [1] or show appreciation and interest
[2, p. 61].
To compare repository metrics and a repo’s success, the researchers Brisson et
al. [2] implemented a linear regression model with those metrics as input vari-
ables and the star count as the output variable. The metrics included figures like
the number of forks, fork depth, pull requests from inside (from the repository
via branching) or from the family (via forking), issues from users belonging to
that repository or issues from users outside the family. Some metrics (those with
Spearman’s coefficient |ρ| > 0.7) were excluded from the linear regression model.
“Including correlated variables in linear regression models negatively affects the
stability of linear models, and hides the impact of each metric on the response
variable” [8, as cited in [2]]. After the model was fitted and standardized, they
analyzed the weights of the inputs. They then interpreted them as the respective
metric’s impact on the repository’s star count (success). Some of the results were
(statistically speaking!):

– The deeper the fork is in the ‘forking tree’, the fewer stars it has.
– The more forks a repository has, the more stars it has.
– The age of the repository has no significant impact on the star count.
– The more repository users contribute to other repositories in the same family,

the more stars it has.
– The number of pull requests with family members (via forking) correlates

significantly positive with the star count.
– However, the more the repository relies on pull requests from inside (via

branching), the fewer stars it has.
– The number of created issues correlates positively with the star count (from

users inside, outside and family).

Generally speaking, we can see that the more “communication” there is, the
more successful a repository is. Communication between family members does
influence a repository’s popularity. The researchers went one step further.
They grouped each metric into four categories: non-communicative (e.g., age
of repository), repository (e.g., number of PRs via branching), family (e.g.,
number of PRs via forking), outside (e.g., issues created from users outside the
family). Then they analyzed how each category contributed to the model’s fit
by figuring out the relative importance of the inputs. Therefore they used the
pvmd-score (proportional marginal variance decomposition) in the relaimpo R-
package. Without going into detail: When trying to estimate how well the model
explains the variance of a given dataset, one looks at the R2-score.

R2 = 1−
Unexplained Variation

Total Variation
= 1−

∑
(yi − ŷi)

2∑
(yi − ȳ)2

Where yi represents the output variable of an entry in the dataset. ŷi is the
estimation of the model for that entry and ȳ is just the mean of the output

6 Proseminar: Software Analytics

variable. Again, without going further into detail, the pvmd-score of an input
variable is a sophisticated approach to quantify (in %) how much a variable in-
fluences the R2 score [4] [12, p. 109]. The pvmd score of all variables must sum
up to 100 %.
Brisson et al. [2] then found out that with 34.1 %, family communication in-
fluenced the model the most. Non-communicative metrics explained 30.3 % of
the responsive variance. Metrics of the outside category contributed 22.7 % to
the model’s fit. The repository explained only 12.8 % of the fit. Hence, the re-
searchers inferred that “Interactions involving family members contribute the
most to repository star count.” [2, p. 66].
We have now seen that creating forks on GitHub and communicating between
the family members is highly beneficial and explanatory for a project’s success.
Due to this and because > 99.9% of GitHubs forks can be seen as Social Forks
[13], we can clearly say that, from looking at the figures, Social Forking is very
favorable. That is also what Zhou et al. [13] qualitatively found out in their in-
terviews and research (from the developer’s point of view). An accomplishment
of GitHub.

4 Hard Forks

Now that Social Forking has been discussed and the characteristics, commu-
nication and success (factors) have been examined, we look at Hard Forks. In
contrast to Social Forks, Hard Forks are a lot more controversial.

4.1 Hard Forks: A Competing Line of Development

Zhou et al. describe Hard Forks as forks that “continue a separate, often com-
peting line of development” [13, p. 446]. The team that forks a project often
wants to realize their vision of the project. A typical example of a Hard Fork is
LibreOffice which was forked from OpenOffice.org in 2010.

4.2 Why to Create a Hard Fork?

There are many reasons for the creation of Hard Forks. In their paper, Robles
and González-Barahona [10] list the most common reasons to create Hard Forks:

– Technical reasons: A part of the developer community wants to go down a
different path than the repository owners. They want, for example, to include
other functionality.

– Governance reasons: Developers might create a fork when they think
feedback is not heard and the community is not considered.

– Discontinuation of the original project: The fork tries to revive a
project that was discontinued in the past.

Forks Proseminar: Software Analytics 7

– Commercial forks: Sometimes, companies fork OSS to create their version
of it and “meet some commercial interest”[10, p. 6]. It can also occur in
the opposite direction. A community can create a Hard Fork from an OSS
project associated with a company.

– Personal reasons: Interpersonal disputes and differences among the de-
veloper team on fundamental problems can trigger the creation of a Hard
Fork.

By going over 220 different Wikipedia entries on Hard Forks Robles and
González-Barahona figured out that the most common reasons for Hard Forks
are are technical (27.3 %) followed by governance reasons (20.0 %). Zhou et al.
[13] also stated that sometimes a Social Fork turns into a Hard Fork because, at
some point, the repositories become too divergent and it is difficult to reintegrate.

4.3 What Types of Forks are There and How Do They Develop?

There are different types and outcomes of Hard Forks. First, we can distinguish
between forks from active projects and forks that try to revive a dead project. As
per Wheeler [11] and Robles and González-Barahona [10], there are five possible
outcomes for forks:

– Successful branching: The original project and the fork are both successful
and stay alive (with smaller communities each).

– Fork merges back in the upstream repository: “This is where the
projects rejoin eachother” [11].

– Discontinuation of the original project: The fork supersedes the original
project.

– Discontinuation of the fork: The fork is not successful.
– Both fail: Both projects fail after a particular time.

Zhou et al. [13] then tried to quantify those types and outcomes of Hard Forks.
Therefore they constructed a classifier that classified whether repositories are
Hard Forks. In a first step, they checked every repository that is a fork or has
been forked on whether they meet one of seven heuristics (e.g., “fork of...” in the
description, received external pull requests or have at least one year of develop-
ment activity). When the repositories pass that first step, they are considered a
candidate. Then the candidates were analyzed in detail by looking at the commit
graphs and repository metadata.The researchers filtered out repositories used as
course projects or storages, with less than three stars, without any commits after
the fork, and those where 30 % or more of all commits were merged with the
upstream repository. After classifying their labeled test set, they determined an
accuracy of 95 % of the model, with few false negatives. After the researchers
evaluated the model’s output, they found out that Hard Forks are generally a
rare phenomenon. Afterward, they classified 15 evolution patterns of Hard Forks
like ‘revives dead project and succeeds’, ‘revives dead project and does not suc-
ceed’, ‘forks an active project and both stay alive’ or ‘only merges’.

8 Proseminar: Software Analytics

The researchers found out that 7 % of forks try to revive a dead project.
Furthermore, out of the 93 % of forks that are forked from active projects, only 17
% show interaction with each other (merging, syncing). When they interviewed
18 developers (they selected them out of their classified Hard Forks) for 20 to 40
minutes each, they found out that many wanted to coordinate with the upstream
repository owners. However, this conflicts with the figures mentioned above.

“What might explain this difference between intentions and observed
actions is that synchronization and merging becomes difficult once two
repositories diverge substantially and that monitoring repositories can

becoming overwhelming with current tools” [13, p. 453]

The researchers also found out that only 5 % of the time, both the upstream
repository and the fork outlive for a more extended period. In 51 % of the cases,
the Hard Fork lived longer than the upstream repository. 44 % of the time, the
upstream repository lived longer than the fork.
Conclusively, we can say that Hard Forks are somewhat rare, but when they
occur, there is mostly no interaction and infrequently do both projects stay
alive at the same time.

4.4 Demonization of Hard Forks in the Past

Perceptions around forking have tremendously changed.
According to Zhou et al. [13], developers demonized forking in the 1990s and
2000s but also saw it as a fundamental right.
Developers thought that a fork, which back then was always understood as a
Hard Fork, would fragment the developer community, duplicate effort and re-
duce communication [10].
Wheeler [11] argues that “those creating the fork are essentially stating that
they believe the project’s current leadership is ineffective, and are asking devel-
opers to vote against the project leadership by abandoning the original project
and switching to their fork.” He claims that the thread of a fork would be an
encouragement for the repository owners to pay attention to needs and demands
in the project’s community.
Nevertheless, novel research indicates that this demonizing picture is deprecated
and that the apprehensions of the developers do not hold water anymore.

4.5 How Hard Forks Influence the Sustainability of the Developer
Community

Rastogi and Nagapan [9] investigated on how Hard Forks influence the sustain-
ability of the developer community (on GitHub). They had, among other things,
a look at what happened to the developer community after a fork occurred and
how project characteristics influenced the outcome of a Hard Fork.
To measure how active a community is, the team looked at developer community
participation (dcp), which they defined as the accumulated commit count of the

Forks Proseminar: Software Analytics 9

original project and the fork per time interval. They classified Hard Forks by
selecting “Forks that do not send pull requests to predecessor forks, but observe
internal commits” [9, p. 104], but called them independently developed forks.
Rastogi and Nagapan detected three cases of what could happen to the dcp after
a fork occured. There could be an increase in dcp, a decrease in dcp or the dcp
could stay the same.
First, they looked at internally developed projects on GitHub (not imported).
They found out that, astonishingly, only 9 % of the time, the projects experi-
enced a significant decrease in dcp and in 33 % of the cases, the dcp significantly
increased. 58 % of the time, the dcp stayed more or less the same after the fork
occurred. Then, the researchers had a look at projects that were imported to
GitHub. However, the number of projects that experienced a decrease sharply
rose to 20 %, while the portion of projects that observed an increase in dcp
(30 %) and those that observed no significant change in dcp (50 %) decreased
accordingly. The researchers have not provided any explanation as to why this
is the case.

Rastogi and Nagapan [9] also examined how project characteristics at the
time of forking influenced the dcp afterwards. A few things they found out were:

– The higher the influence of the repository’s owner, the more likely the
project is to maintain dcp after the fork.
They measured the influence of the owner “in terms of the nature and size
of the follower base” [9, p. 107]. It is given by the count of the follower’s
followers. That means that an owner is influential if he has many popular
followers.

– The more popular (watchers’ count) the upstream repository is, the lower
the chances of decline in dcp.

– The project’s age has a significant impact on the dcp after the fork oc-
curs. In medium-sized projects (11-29 contributors), an increase of maturity
(upstream repository) by one year reduces the odds declining dcp by 23 %.
However, in large projects (> 30 contributors), the odds of decline rise by
18 %. The researchers leave no possible explanation for the divergence.

The research shows that the traditional perception of forks requires an over-
haul. Rastogi and Nagapan showed that forking “increases developer community
participation in more projects than it decreases developer community participa-
tion.” [9, p. 111]. Nevertheless, the decrease influences a significant portion of
projects [9].
This shows that further research on the impact forks have on the sustainability
of the developer community is sensible and of immense interest.

4.6 (A)typical example: LibreOffice

In this section, the general findings examined above are applied to a concrete ex-
ample: LibreOffice. LibreOffice (LO) is a well-known fork that has more than 10

10 Proseminar: Software Analytics

years of active contributions, has significant commercial interest and has been
adopted for professional use [3]. LibreOffice can as easily be described as the
“Microsoft Office of Open Source”.
It was forked from OpenOffice.org (OO) in 2010, after Sun Microsystems, which
managed OO, was taken over by Oracle. The contributors were dissatisfied with
Oracle’s stance towards Open Source Software [3] [6]. Therefore, some influential
committers forked LO from OO to realize their own vision. Hence, LibreOffice
satisfies the characteristics of a hard fork.
What was the outcome? OpenOffice.org was continued by Apache under Apache
OpenOffice (AOO). Although it still exists, LibreOffice outpaced AOO. It is one
of the few times when both upstream repository and fork stay alive simultane-
ously [13]. However, LibreOffice is the project with higher community activity.
In their study, Gamalielsson and Lundell [3] showed that LO had three to five
times more monthly commits and committers in the years after LO was created
By surveying OO and LO contributors, the researchers found out that many
developers were frustrated with the license of OO and argued that “’it stopped
being an Open Source project under Oracle’” [3, p. 138]. The surveyees argued
that, when contributing to LO, they felt freed and enjoyed participating again.
The team discovered that most of the contributors of OO then chose to con-
tribute to LO.

The example of LibreOffice perfectly illustrates the findings of Rastogi and Na-
gapan [9]: Hard Forks cannot be demonized. As Gamalielsson and Lundell, when
referring to LibreOffice, put it:

“It is thereby demonstrated that successful transfer and evolution of
know-how and work practices can be achieved beyond individual Open

Source software projects” [3]

5 Conclusion

Forking is a core topic of Open Source development that is getting more and
more popular. Especially in the past decade, the way researchers and the OSS
community think about forks, has substantially changed.
Traditionally, forking referred to the creation of a copy of a repository that was
then used to separate from the original project. Reasons for the creation of such
can, for example, be of technical or personal nature or have something to do
with the way a repository is governed [10]. Developers were afraid of them be-
cause they feared that the creation of those forks would fragment the developer
community. Zhou et al.[13] called this type of fork Hard Fork. However, recent
studies [9] [3] have shown that the demonization of Hard Forks is not sensible
anymore. The sustainability of the developer community regarding Hard Forks
depends on different factors. In this paper, the Hard Fork LibreOffice was dis-
cussed and compared with Hard Forks in general.
With the rise of GitHub, a new paradigm of forking emerged: Social Forking

Forks Proseminar: Software Analytics 11

[13]. Social Forks are used to fix bugs and add features, which then are rein-
tegrated into the original project by submitting pull requests. Submitting pull
requests is now the most common reason to create forks [?]. Communication
between developers can happen via this process and it is shown that this type
of communication benefits a project’s success [2].

Conclusively, this paper has shown what forks are, how they work, how de-
velopers use them and how the perceptions and usages have changed over time.

References

1. Saving Repositories with Stars (2022), https://docs.

github.com/en/get-started/exploring-projects-on-github/

saving-repositories-with-stars#about-stars

2. Brisson, S., Noei, E., Lyons, K.: We Are Family: Analyzing Communication in
GitHub Software Repositories and Their Forks. In: 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER). pp. 59–
69 (2020)

3. Gamalielsson, J., Lundell, B.: Sustainability of Open Source software communi-
ties beyond a fork: How and why has the LibreOffice project evolved? Journal of
Systems and Software 89, 128–145 (2014)

4. Groemping, U.: Relative Importance for Linear Regression in R: The Package
relaimpo. Journal of Statistical Software 17(1), 1–27 (2006)

5. Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P.S., Zhang, L.: Why and how developers
fork what from whom in GitHub. Empirical Software Engineering 22(1), 547–578
(2017)

6. Noyes, K.: Don’t Count on Oracle to Keep OpenOffice.org Alive (2010),
https://www.pcworld.com/article/502617/dont_count_on_oracle_to_keep_

openoffice_org_alive.html

7. Nyman, L., Lindman, J.: Code Forking, Governance, and Sustainability in Open
Source Software. Technology Innovation Management Review 3, 7–12 (2013)

8. Rao, S.J.: Regression Modeling Strategies: With Applications to Linear Models,
Logistic Regression, and Survival Analysis. Journal of the American Statistical
Association 98(461), 257–258 (2003)

9. Rastogi, A., Nagappan, N.: Forking and the Sustainability of the Developer Com-
munity Participation – An Empirical Investigation on Outcomes and Reasons. In:
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). vol. 1, pp. 102–111 (2016)

10. Robles, G., González-Barahona, J.M.: A Comprehensive Study of Software Forks:
Dates, Reasons and Outcomes. In: Hammouda, I., Lundell, B., Mikkonen, T., Scac-
chi, W. (eds.) Open Source Systems: Long-Term Sustainability. pp. 1–14. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

11. Wheeler, D.A.: Why Open Source Software / Free Software (OSS/FS, FLOSS, or
FOSS)? Look at the Numbers! (2015), https://dwheeler.com/oss_fs_why.html

12. Zhang, Z., Wang, L.: Advanced statistics using R. ISDSA Press, Granger, IN (2017)
13. Zhou, S., Vasilescu, B., Kästner, C.: How Has Forking Changed in the Last 20

Years? A Study of Hard Forks on GitHub. In: 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). pp. 445–456 (2020)

