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1 Introduction

A major aspect of Software Engineering is the correctness of software. Bugs can
cause unhappy customers and cost tons of money 1. Therefore it is important to
keep code clean and understandable. How can we minimize those flaws?
The human itself plays a principal role in the success of software projects. If
humans are stressed out or have difficulties solving a particular problem, the
process of software engineering can stagnate, and bugs can sneak in. Even today,
we know little about how the human brain when it comes to software develop-
ment [23] [21] [8].
In this paper, we focus on how the brain and body react to different difficulty
levels of coding tasks and discuss how biometric signals indicate those levels -
independent of empirical difficulty metrics of code. In this paper we discuss the
use of Lightweight Biometric Sensors (LBS) [10] and compares them with func-
tional Magnetic Resonance Imaging (fMRI).
Finally, we present a study idea that aims to classify code difficulty based on
psycho-physiological measures with the help of Machine Learning. The study is
based on an experiment by Fritz et al. [9] but proposes some significant alter-
ations. Our study aims to improve their study by considering novel knowledge
and using different equipment like fNIRS and heart-related sensors.

This paper

– presents an fMRI study on Code vs. Prose Comprehension by Floyd et al. [8]
and compares it to a replication study by Fucci et al. [10] using lightweight
biometric sensors. The study shows that using LBS are sensible for classi-
fication tasks with high ecological validity and low costs and that they are
superior to fMRI studies in a specific context.

– uses this information to present a study idea that aims at improving a study
by Fritz et al. [9]. In the study, the researchers classify psycho-physiological

1 https://medium.com/@99tests/21-infamous-expensive-software-bugs-f678827f94a6
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signals into ’comprehending simple vs. difficult code’ with LBS. By including
novel knowledge, other devices, and techniques and enriching the original
study by the distinguishment of novices and experts, we aim to enhance and
improve their study.

1.1 Background

Recent years have brought us superior medical imaging techniques and various
possibilities to analyze biological signals of humans. We can use those devices
and techniques to gain knowledge about the cognitive state of a person.

One tool that is particularly suitable for a deep understanding of neural pro-
cesses is fMRI. MRI is a medical imaging technique that reveals the morphology
and composition of biological tissues.
In the 1990s, researchers discovered that with MRI, one could observe different
levels and changes in oxygenated blood. Oxygenated blood does not interact
with a magnetic field as much as deoxygenated blood does. The activation of a
specific brain area requires oxygen. Therefore the ratio between oxygenated and
deoxygenated blood increases compared to a baseline state. This is called the
BOLD effect. From the differences in the BOLD response, one can infer which
brain areas are activated during specific tasks. [21]

Fig. 1. fMRI image. Highlighted area displays increased activity compared with a base-
line image

In 2014 Siegmund et al. [23] published a seminal paper on using fMRI in the
context of SE. The team proposed fMRI as a suitable tool for empirical software
engineering and found that fMRI can be used to gain a deeper understanding of
code comprehension. Since then, many other research teams have examined the
human factor in software engineering using fMRI [8] [5] [14] [17].
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It seems that fMRI, due to its high spatial locality, is the silver bullet when it
comes to answering neuroscientific questions in Software Engineering. However,
fMRI is expensive (about 500$ per hour [8]), and researchers argue that the re-
sults of fMRI studies have low ecological validity2 [10].
In this study, we focus on devices and methods that do not have these disad-
vantages and can be used to measure the cognitive state of a person. Methods
can either directly measure brain activity or the ’symptoms’ of what is hap-
pening inside the brain. Fear, for example, can lead to an elevated heart rate
and increased skin conductance level [2, p. 372]. When measuring a few of those
’symptoms’ and putting them into context, one can estimate the cognitive state
of a person.
This paper mainly focus on what Fucci et al. call [10] call lightweight biometric
sensors. They characterize them as ”non-intrusive, wearable, and affordable de-
vices—to measure human physiology” [10, p. 311]. The researchers argue that
those devices have the advantage of being cheaper and their results being more
ecologically valid, i.e., more applicable to a real-world setting, than fMRI.
To our best knowledge, Chris Parnin [20] was the first to use LBS, namely a
Electromyogram (EMG), in the context of software engineering. He used the
EMG to detect sub-vocal utterances (”electrical signals sent to the tongue, lips,
or vocal cords” [20, p. 197]) and then relate them to a specific area of code the
subjects had looked at.
The study by Fritz et al. [9], that we base our experiment on, used eye tracking,
EEG, and EDA, which can be categorized as LBS, to classify developer’s bio-
metric signals into ’understanding simple source code’ vs. ’understanding hard
source code’. Their results were promising but improvable. The model’s precision
for classifying the task difficulty was below 70% - given a novel developer with
a novel task. In Part 3 of this paper, we discuss the alterations in greater detail.

2 Are LBS Sensible for the Classification of Biometric
Signals? Is fMRI Not the Silver Bullet?

To better understand whether data gathered from lightweight biometric sensors
is suitable for SE related classification tasks, we discuss an exemplary study by
Floyd et al. [8] (fMRI) and its replication study by Fucci et al. [10] (LBS).

2.1 Using fMRI

Motivation. Floyd et al. [8] examined the brain activity of developers while
understanding code and reviewing prose. In this paper, we exclude their findings
on code review because code review was also left out in the replication study.
For that they used an fMRI scanner and argued that fMRI has advantages
over EEG, PET, etc. because it monitors the brain’s complete activity with
outstanding precision.

2 https://www.britannica.com/science/ecological-validity
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Subjects. The final sample of developers consisted of 18 men and 11 women
with different GPAs and experiences (e.g., graduate or undergraduate).

Tasks. In the fMRI scanner, the participants were provided with code, asser-
tions about it, and English prose text with edits. With a button in hand, the
developers had to indicate whether they approved of an assertion/edit or not.
The researchers collected data until the decision was made.

Data Processing and Machine Learning. Then they used the fMRI device’s
four-dimensional data (3D + time). After preprocessing the data, the researchers
obtained a time series with three-dimensional (spatial) voxels where the value of
a voxel describes the activation of this area.
For machine learning, they used Gaussian Process Classification. Because fMRI
data is extensive and the training set relatively small, they applied a kernel
to the spacial voxels to reduce dimensions. Floyd et al. used leave-one-run-out
cross-validation to test their classifier performance.

Results. The classifier could discriminate neural representations of prose review
and code comprehension with a Balanced Accuracy Score (BAC) of 79.17%.
Nevertheless, what about the activated regions? When overlapping data from
code comprehension and prose review and considering that classification is pos-
sible, it becomes clear that the regions with a big difference in BOLD activation
influence the model stronger than those with few deviations. The team then
averaged the voxel weights over the number of voxels in the region and divided
this ’contribution strength’ [8] by the sum of strengths for all regions. The value
can be interpreted as regional importance. Fig. 2 shows that especially the re-
gions around the prefrontal cortex had huge importance for the classifier. The
prefrontal cortex is responsible for short term memory [15] and higher order cog-
nition [8]. Floyd et al. do also find that there is a high regional importance “near
Wernicke’s area in the temporoparietal cortex — a region classically associated
with language comprehension” [8, p. 182].

It seems that we can accurately distinguish code comprehension tasks from prose
reviewing tasks and have insights into what happens inside the brain. So why
use other devices?

2.2 Using Lightweight Biometric Sensors

Motivation. Fucci et al. [10] wanted to replicate the study of Fritz et al. [9]
by using lightweight biometric sensors. They identified the costs and the low
ecological validity of the original study as the major issues. The use of the less
invasive sensors, they argued, would fix those problems because they cost less
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Fig. 2. Average regional importance map. “Hot” colors indicate areas containing a
greater proportion of the total classification weight. Taken from [8]

(500$/hour vs. 2000$ one-time) and could be worn in a real-world setting. This
is also the motivation for the use of LBS in our experiment.

Research questions. The researchers slightly altered the research questions of
Fritz et al. and came up with the following two questions.

– RQClf : Can we classify which task a participant is undertaking based on
signals collected from lightweight biometric sensors?

– RQExp: Can we relate expertise to classification accuracy?

Setup and Tools. In contrast to Fritz et al.’s setup, the team replaced prose
review with high school prose comprehension tasks (simple assertions about a
text), so the activities are comparable. This binary classification of comprehen-
sion tasks could have made more sense in Fritz et al.’s study, but it was left out
because of the code review part of their study.
Fucci et al. decided to use the electronic wristband Empatica E4 to measure the
developers’ electrodermal activity (EDA) and heart activity in terms of blood
volume pressure (BVP). The BVP can be used to calculate the heart rate (HR)
and the heart rate variability (HRV). The EDA consists of a tonic component
which indicates the skin’s level of electrical conductivity (SCL), and a phasic
component indicating changes in the conductivity or the skin’s conductance re-
sponse [10] [3].
They also used an EEG device that can be strapped around the head, called
BrainLink. This devices measures cerebral waves and categorizes them into spe-
cific wavelengths (delta (<4Hz), theta (4-7.5Hz), alpha (4-12.5Hz), beta (13-
30Hz), and gamma (>30Hz)). Specific wavelengths can be attributed to specific
cognitive states. For example, alpha waves typically represent an awake but non-
focused, relaxed state 3. After a short pre-experimental briefing, the devices were
calibrated by letting the developers watch a fish tank video. That method is used
to collect physiological baselines [10]. Studies have indicated that there is ”a link

3 https://www.rsu.edu/wp-content/uploads/2015/06/
TheElectroencephalogramEEGCorticalArousal.pdf
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between viewing fish in aquariums and benefits such as reduced blood pressure
and increased relaxation”[6, p. 4].
In each of the three sessions, which constituted the actual experiment, the devel-
opers then had to assess three code and six prose comprehension tasks displayed
randomly. By pressing the arrow keys on a keyboard, they indicated if they
approve or decline an assertion displayed for the respective example.

Fig. 3. Empatica E4 wristwatch and BrainLink EEG

Processing of data. To process the collected data, the team synchronized the
collected signals with the posed questions regarding time from the beginning to
the submission of an answer. Furthermore, they normalized the signals concern-
ing the physiological data fetched in the last 30 seconds of the fish tank video,
which they used as a baseline.
In order to extract features out of the EEG signal for machine learning, the re-
searchers used bandpass filters at different intervals (alpha, beta, gamma, delta,
theta) to decompose the bare signal. They used information from those frequency
bins as features.
Those methods were similarly proposed by Canento et al. [4]. They also applied
a bandpass filter (1-8Hz) to the rare BVP and collected information such as min,
max, mean, and differences between the baseline signal and the task signal.
For extracting tonic and phasic components of the EDA Fucci et al. used the
cvxEDA algorithm [11]. They extracted features such as mean tonic signal, min,
max, mean, area under the receiving operator curve, etc.

Machine Learning. In order to classify the physiological data correctly, the
team decided to use eight popular machine learning models (Naive Bayes (nb),
kNN, Decision tree (J48), SVM with a linear kernel, Multi-layer Perceptron
(mlp), Random Forest, rule-based optimizer (Jrip), boosted Decision Tree (C5.0)).
For testing, the researchers used a LORO and a Hold-out setting which they re-
peatably applied to achieve a reliable score. Because of the imbalanced training
data (more prose than code comprehension), they propose a Balanced Accuracy
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Score (BAC) as the measure for the classifier’s performance.
In order to improve their results, Fucci et al. used hyperparameter tuning with
a GridSearch approach.

Results. Concerning RQClf , the researchers found out that there was no clas-
sifier that outperformed the others independently from the considered signals
significantly, even though, according to the researchers, the Naive Bayes and the
kNN seem inappropriate for the task. They found that the BAC is the highest
when only considering heart-related signals. Heart + EEG + EDA does not im-
prove performance significantly. The BAC of classifiers considering EEG only is
the worst in both settings (LORO and Hold-out). Tables 1 and 2 display the re-
sults. Conclusively, they argued, lightweight biometric sensors could accurately
differentiate between code and prose comprehension tasks.

Regarding RQExp, Fucci et al. find no significant correlation between expertise
(measured by GPA) and classifier performance using the Kendall tau correlation
coefficient.

Signal Best Classifier Precision Recall F1 BAC

EEG mlp 0.72 0.66 0.62 0.66
EDA rf 0.78 0.71 0.71 0.71
Heart mlp 0.91 0.87 0.87 0.87

EEG + EDA C5.0 0.75 0.72 0.72 0.72
EEG + Heart Jrip 0.90 0.86 0.87 0.86
EDA + Heart mlp 0.91 0.83 0.86 0.83

EEG + EDA + Heart Jrip 0.88 0.86 0.86 0.86

Table 1. Best machine learning classifier in LORO setting. Taken from [10].

Signal Best Classifier Precision Recall F1 BAC

EEG rf 0.70 0.67 0.68 0.67
EDA Knn 0.83 0.74 0.77 0.74
Heart mlp 0.95 0.90 0.92 0.90

EEG + EDA mlp 0.75 0.75 0.75 0.75
EEG + Heart C5.0 0.90 0.89 0.90 0.89
EDA + Heart svm 0.93 0.87 0.89 0.87

EEG + EDA + Heart C5.0 0.92 0.89 0.90 0.89

Table 2. Best machine learning classifier in LORO setting. Taken from [10].



8 Niklas Britz Advisors: Prof. Sven Apel, Sebastian Böhm

2.3 What does this show?

We saw that the lightweight biometric sensors outperformed the fMRI classifica-
tion. Those sensors are sensible when deciding whether a developer is trying to
understand prose or code. The benefit of this study is that the ecological validity
is higher than with fMRI. Because the wristwatch is also affordable, it can be
worn by developers on a daily basis. By integrating measured signals of LBS into
software, it could help to fix imbalances in developers’ daily work. Developers
that have a high coding workload could be assigned assistance.
Conclusively, this exemplary study shows that LBS are reasonable for classifi-
cation tasks with high ecological validity and it makes sense to use lightweight
biometric sensors for our problem.

3 LBS, LBS on the Body, What’s the Task’s Difficulty?
A Study Idea

As seen in the section above, LBS are practical tools when it comes to the
distinguishment of biometric signals. That is why Fritz et al. [9] used those
devices in 2014 to discriminate developer’s psycho-physiological signals when
comprehending simple code from those when comprehending difficult code. Their
results are promising but, as we will see, improvable.
Our study aims to improve their results. In the following we will analyze their
study and propose alterations and suggestions.

3.1 Original Study

Fritz et al. [9] wanted to figure out

– if they can acquire psycho-physiological measures from eye-tracking, EDA
and EEG sensors to accurately predict whether a task is difficult or easy.

– RQ2: which combination of psycho-physiological sensors and associated fea-
tures best predicts task difficulty.

The researchers collected psycho-physiological signals from 15 developers who
are professional software developers from the area around Seattle.
They have presented ten tasks of two different kinds. The first program assigned
coordinated for the corners of two rectangles. The developers then had to an-
swer if the rectangles overlapped (yes or no). There were three instances of the
program. One was a simple practicing instance. The second one used local vari-
ables with single letters. The third one contained ”randomized and interleaved
assignments of the corner coordinates for both rectangles” [9, p. 405].
The second program created four shapes and printed them in some order. After
the code snippet’s display, the researchers presented a multi-choice question that
dealt with what shapes were drawn and in what order. The instances of that
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program differed in the used variable names, order of shape initialization and
drawing, iterable array of shapes vs. singular items, calling a separate function,
etc. After each question, the developers had to answer a NASA TLX [13] survey
instrument, which asked them to rate the previously seen task from 1 – 20 for six
categories: mental demand, physical demand, temporal demand, performance,
effort, and frustration. Then the subjects had to rank those categories among
each other by their importance. They combined the answers to receive an overall
score. The developers also had to subjectively rank the perceived task difficulty
for each task. The tasks with low overall ranks were classified as easy and with
high overall ranks as difficult. The ones in the middle could be assigned to a
category by looking at the developers’ comments, which were unambiguous in
98% of the cases.

Results. After data cleaning and feature extraction from the biometric signals,
they applied a Naive Bayes ML model. The researchers argued that Naive Bayes’
training could be easily updated on-the-fly. They did three different types of
predictions (by participant, by task, by participant-task). We focus on the ’by
participant’ classifier, which is the most useful in practice [9] because it can be
applied to the biometric signal to an unknown person and an unknown task. The
results can be seen in Table 3.

Signal Precision Recall F-Measure

Eye 0.69 0.66 0.65
EDA 0.55 0.56 0.52
EEG 0.53 0.57 0.51

EYE + EDA 0.68 0.64 0.62
EYE + EEG 0.69 0.63 0.61
EDA + EEG 0.68 0.65 0.62

EYE + EDA + EEG 0.65 0.65 0.62

Table 3. Best machine learning classifier. Taken from [9].

We see that the best classifier has ’only’ 69% classification accuracy. The
study of Fritz et al. was published in 2014. Since then, many new studies in
this area have been published. Our study aims to improve the original study’s
results (see below) because, as motivated, the problem is still relevant. With
better results, one could better understand what characterizes task difficulty in
SE from a psycho-physiological perspective. Moreover, for practical purposes,
one would have a more accurate classifier.

3.2 EEG vs. fNIRS

In both Fritz et al.’s [9] and Fucci et al.’s [10] study, we can see that EEG has
only a poor influence on the classifier performance (Table 1, 2, 3). In fact, in all
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studies, EEG performed the worst. When looking at ’easy vs. hard code com-
prehension’, EEG has a precision of around 53%. Considering that the training
set is imbalanced (51 difficult and 65 easy tasks), one can argue that guessing
would be better.
We cannot say for sure why the classifiers trained with EEG data perform so
bad compared to other data sources. We see that EEG performs better when
classified by task in Fritz et al.’s study. This could be because every person’s
brain is unique, and it is challenging to build a generalizable model. Another
reason could be that it is difficult to learn from 31 EEG features with only a
relatively small data set.
In order to capture cognitive load better we could either use a larger training
set, which would not necessarily ensure a better predictor, or we could try to
use another device.
fNIRS is a medical imaging technique that works complementary to EEG.
While EEG records cellular currents associated with neuronal activity, fNIRS
quantifies the brain’s activity by measuring cerebral blood flow. Because oxy-
genated (oxyHb) and deoxygenated blood have characteristic optical properties,
fNIRS instruments can send and receive reflected near-infrared light to calculate
the amount of oxygenated blood and thus the neural activity [1].

”The main advantage of fNIRS over EEG/ERP is the localization of re-
sponses. In fNIRS, the effects are localized within 1–2 cm of the area ac-
tivated, allowing for more accurate identification of the areas from which
cortical responses were obtained than electrophysiological techniques.”
[25, p. 266]

We hope that better localization of signals could lead to better classification.
In the fMRI study by Floyd et al. [8], we saw that the neural representations of
code comprehensions and prose review were less indistinguishable with a grow-
ing expertise. That means that for easy code comprehension tasks (cf. exper-
tise), neural representations could be similar to when thinking about prose. In
contrast, neural representations of demanding code comprehension tasks could
match with ’normal code comprehension’ in Floyd et al.’s study.
In Floyd et al.’s study, the researchers used brain localization, especially in the
prefrontal cortex to receive their results. fNIRS can also use localize the origin of
signals (although not as precise as fMRI and only 1cm brain depth [25]). fNIRS
is also cost-effective and portable [1].

fNIRS in SE Studies. fNIRS was also part of Software Engineering studies.
In particular, it has been used to measure and quantify brain activity when de-
velopers comprehend code.
Nakagawa et al. [18] were, for instance, one of the first to use fNIRS in a SE
context. They invited ten graduate students to answer questions for specific code
snippets of two difficulty levels. The researchers presented three different algo-
rithms with two levels of difficulty each. The difficult tasks contained obfuscating
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code and quickly changing variables. The developers then had to simulate the
execution in their heads and had to evaluate variables at certain checkpoints.
During the subjects performed the tasks, Nakagawa et al. measured the cerebral
blood flow with fNIRS. Then they normalized the measured value of oxygenated
blood with the following equation:

normalized oxyHb =
oxyHb−min(s)

max(s)−min(s)

min(s) and max(s) are the maximum and minimum values of oxyHb through-
out all tasks of each subject s. In Figure 4, we can see the researchers’ results
for the different subjects.

Fig. 4. Distributed oxyHb. Taken from [18]

Also, one can see that the variance within all hard tasks per participant is
higher than within simple tasks. The researchers suggest that there are phases
of low cognitive effort even during the comprehension of difficult code.

Another study by Ikutani and Uwano [15] measured the effect variables and
controls in source code have on the brain’s activity using fNIRS during program
comprehension. They found that variable memorization leads to activation in
the prefrontal cortex without the influence of arithmetics.

The two studies showed that fNIRS could be used to capture cognitive workload
in a program comprehension setting. Especially Nakagawa et al. proved that
fNIRS could be sensible in a task difficulty classification.
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3.3 BVP

To further improve the study results of Fritz et al., we suggest introducing heart-
related signals into the psycho-physiological measurement of developers. Neuro-
scientific research suggests a link between cognitive processes, attention, emo-
tions, and heart rate variability [7] [16]. In the study of Fucci et al. [10] the signals
that led to the best classifier between prose comprehension and code compre-
hension were the heart-related signals, i.e., heart rate and heart rate variability
[7] [16]. Although Nickel and Nachreiner argued that ”HRV is an indicator for
time pressure or emotional strain, not for mental workload” [19, p. 575], difficult
tasks can lead to the former.
We suggest incorporating the Empatica E4 watch, which provided good results
for Fucci et al. in their study. Also, this watch can perform an EDA so that we
can get rid of the EDA device of the original study.

3.4 Introducing Programmer’s Experience in the Study

Another significant change to the original study is the introduction of program-
mers’ experience to our study.
In contrast to the proposal of Floyd et al. [8] and Fucci et al. [10], we propose
to use the results of practical programming projects of a mandatory course at
Saarland University as a measure of programming experience. Although the gen-
eral GPA correlates with learning and academic skills [12], the GPA is slightly
influenced by programming experience.
It is interesting to see if an experienced programmers still show the same bio-
metric signals as a less experienced programmer. A negative correlation between
received points and classifier accuracy implies that the more experienced one is,
the less indistinguishable the psycho-physiological signals are concerning task dif-
ficulty. The more interesting case is probably be a non-significant, non-negative
correlation. That would imply that even though one might be a good program-
mer, one could still classify the psycho-physiological signals as if one was a
’beginner’.

3.5 Study Design

Research Questions

– RQ1: Can we accurately distinguish easy and difficult coding tasks by de-
velopers’ biometric signals (fNIRS, heart-related signals, EDA, eye-related
signals)?

– RQ2: Is there a correlation between programmers’ expertise and classification
accuracy?

Subjects. In order to be comparable to the original study, we invite around
20-25 subjects - bearing in mind that some will not show up. In contrast to the
original study, we do not invite software professionals but university students
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from Saarland University that have completed their introductory programming
courses ’Programming 1’ and ’Programming 2’. As mentioned above, this is
justified because of the introduction of programmers’ experience in the study.
Optimally the participation in this mandatory programming course should not
date back further than two years. All participants should be right-handed, have
normal or corrected-to-normal vision, and report no history of neuropsychologi-
cal disorders. Subjects should be monetarily rewarded.

Data Capture. The data-capturing tools of the study comprise an eye-tracker
as described in the original study. Since the study is eight years old, technol-
ogy has developed, and eye trackers that are capable of delivering good results
cost only a few hundred dollars. Those devices can also deliver ”real-time data
streams including gaze point, eye position, pupil diameter, user presence, and
head pose” 4.
Furthermore, we include an EDA / Heart sensor in the study. Analogously to
Fucci et al.’s [10] we propose to use the Empatica E4 5, which has been moti-
vated and described in the paper. Moreover, we use an fNIRS device, which at
least covers the prefrontal cortex area. Although the price of a research-suitable
fNIRS device starts from a lower five-digit number, one can rent such a device
for a few sessions.

Experimental Tasks. Because the subjects should all be familiar with Java,
they receive eight different code snippets of Java Code based on two challenges.
They are based on the tasks that Fritz et al. [9] posed.
The first program creates two rectangles, assigns the coordinates of the cor-
ners, and prints the rectangles on the screen (but the developer cannot see the
printing). The developer then has to state if the rectangles overlap. Fritz et al.
used three incremental instances: practice version, use of non-mnemonic vari-
ables, interleaving assignments and randomized assignments. They argued that
the program would stress the developer regarding spatial relations, visual object
grouping, and working memory.
In another incremental instance, we include a method that receives a coordinate
(x, y) that swaps x and y if a specific arithmetic formula is unequal to zero.
This strains the developers regarding program flow comprehension and mathe-
matical/logical thinking. Figures 5 and 6 show an example of a practice and a
challenging task.

The second program of Fritz et al. creates four shapes and draws them on the
screen in a particular order. From a set of possible answers, the developer has to
decide which shapes were drawn and in what order. The researchers created seven
instances that differed in the order between initialization and drawing, variable
names (generic vs. mnemonic), iterable array of shapes vs. single shapes, sep-
arated functions vs. single function, and mathematical operator in control flow

4 https://tech.tobii.com/products/eye-tracker-5l/
5 https://www.empatica.com/en-eu/research/e4/
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Fig. 5. Practice Task 1, Example

pub l i c c l a s s TaskOne{
pub l i c void run ( ) {

C lB1 = new C(0 , 0) ;
C rB1 = new C(1 , 0) ;
C lT1 = new C(0 , 1) ;
C rT1 = new C(1 , 1) ; // lB1 : , rB1 : , lT1 : , rT1 :

C lB2 = new C(5 , 0) ;
C rB2 = new C(6 , 0) ;
C lT2 = new C(5 , 1) ;
C rT2 = new C(6 , 1) ; // lB2 : , rB2 : , lT2 : , rT2 :

R one = new R( lB1 , rB1 , lT1 , rT1 ) ;
R two = new R( lB2 , rB2 , lT2 , rT2 ) ;
draw ( one ) ; draw ( two ) ;

}
pub l i c void draw (R r ) { /∗ f oo ∗/ }

}

Fig. 6. Hard Task 1, Example

pub l i c void run ( ) {
C a = new C(0 , 0) ;
C b = new C(1 , 0) ;
C c = new C( a . x , 2) ;
C d = new C(0 , b . y ) ; // a : , b : , c : , d :
C e = new C(1 , c . y ) ;
C f = new C(5 , 12) ;
C g = new C(b . x , 1) ;
C h = new C(6 , 0) ;
foo ( f ) ; // e : , f : , g : , h :
R one = new R(a , c , g , f ) ;
R two = new R( e , d , b , h ) ;
draw ( one ) ; draw ( two ) ;

}
pub l i c void foo (C c ) {

i f ( ( ( c . x − c . y ) ∗ 7) % 2 != 0) {
i n t y = c . y ;
c . y = c . x ;
c . x = y ;

}
}
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vs. no arithmetic task.
To increase the working memory workload, I include instances where shapes are
built out of other shapes (e.g., three coordinates, the middle of a circle, a corner
or a rectangle, and a corner of a triangle, constitute a new triangle or just a
single line if one point lies in the line of the two other points).
In order to diversify the tasks and not concentrate on only a few static code
snippets, we suggest mixing the different instances in tasks one and two. For
example, one instance has, among other things, mnemonic variables but an it-
erable array of shapes and separate functions. In contrast, another instance has
generic variables, shapes not stored in an array, and separated functions.

Experimental Procedure. The experimental procedure is very similar to the
one Fritz et al. proposed in their study [9].
Before the experiment, developers get three example tasks to familiarize them
with the format. Then we proceed with the actual experiment, in which tasks are
displayed randomly. Before each task, the developers watch a fish tank video. As
mentioned above, this fosters bodily relaxation and ease of the mind [6]. When
the psycho-physiological signals return to their baseline, we take those signals
as a reference to the signals collected during the task. Therefore, Fucci et al.
proposed to use the last 30 seconds of the fish tank video [10].
In contrast to the original study, one must collect the heart rate, heart rate
variability, and oxy-Hb baseline. After the task, the subjects fill out the NASA
TLX survey that was motivated and explained above (3.1. Original Study).

Data Cleaning and Transformation. The Data Cleaning and Transforma-
tion does not significantly differ from the original study. Especially the eye-
tracking part could be taken on without significant alteration. For the EDA and
EEG, we adopt the proposals of Fucci et al. to extract features.
For fNIRS, we have to think of something own. If we used the normalizations of
Nakagawa et al. [18], we get similar results as shown in Figure 4. Those values
would be unreliable as features. They do rarely take the baseline of the subject
into account. Nakagawa et al. just measured the signals during the task. Just
taking the minimum as a reference to the current oxyHb is not sufficient.
Instead we propose to use the following formula:

normalized oxyHb =
oxyHb−meanBase(s)

max(s)−min(s)

meanBase(s) quantifies the mean of oxyHb during the last 30 seconds of the
fish tank video and serves as a reference to a subject’s baseline. The domain
of normalized oxyHb is probably [−1; 1 − 2] with 0 < 1, 2 << 1 because
meanBase(s) is probably closer to min(s) then max(s). As features, we extract
the mean of normalized oxyHb and the variance. Furthermore we would include
the minimum and maximum of both attention and meditation (fish-tank video)
phases.
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Outcome Measures. As the measure for the task difficulty, we adapt Fritz et
al.’s proposal of using the NASA TLX survey, which the developers have to fill
out after each task. The NASA TLX overall score and the subjective ranking
(0-20) that the subjects have to fill out cause the task to be classified as simple
or hard. With regard to Fritz et al.’s study, we assume that the vast majority of
programs can be unambiguously assigned.

Machine Learning. For Machine Learning, we stick closer to Fucci et al.’s
proposals than to the original study’s ones. Although Naive Bayes’ training
’can be updated on-the-fly’ [9, p. 408], in Fucci et al.’s classification of psycho-
physiological signals, Naive Bayes’ underperformed. Their approach to trying out
different classical machine learning models (including Neural Networks) could
potentially bring up models that outperform a Naive Bayes classifier. Also, it
is sensible to tune the model’s parameters - for example, with a grid search. In
contrast to Fritz et al.’s original study, we suggest presenting the models’ results
using BAC because the dataset is likely to be imbalanced.

4 Discussion: fMRI vs. Lightweight Biometric Sensors

By discussing and presenting state-of-the-art research in this paper, we have
seen that LBS are more than appropriate for psycho-physiological classification
problems in SE. In terms of pure classification accuracy, we saw that they could
outperform fMRI, even though fMRI displays the brain’s activity accurately to
millimeters. With our study, we aim to improve the results of Fritz et al. even
further. fNIRS and EEG have way better temporal resolution than fMRI and
the other measures are apparently an excellent indicator of cognitive strain.
In this paper, the use of LBS has been motivated and praised. Nevertheless,
there are, of course, certain limitations and disadvantages of LBS.
fMRI and LBS can be compared regarding classification accuracy, but they have
very distinct capabilities and applications. With fMRI, researchers can examine
the brain’s activity in detail and thus can explain observable phenomena. For
example, we can measure that the pupils widen when we look at tasks of higher
difficulty [24]. fMRI can help us to understand why this is the case and what
brain regions cause this effect to happen [22].
All in all, there is no better or worse - it always depends on the application.
Joint research is, therefore, essential to explain mutual relationships.

5 Conclusion

Knowing if a developer faces difficulty with a particular task is crucial. We
discussed why using lightweight biometric sensors supersedes other techniques
for accurately classifying biometric responses to problems in SE by the example
of code comprehension vs. prose comprehension classification. Then, we have seen
that portable, lightweight, and comparably cheap devices have the capability to
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classify the difficulty of tasks. We presented our own study based on a study by
Fritz et al. [9], published in 2014, which aimed at accurately classifying simple
vs. hard coding problems concerning psycho-physiological signals. Our study
focuses on improving the original study by using fNIRS and heart-related sensors
and enriches it by introducing programmers’ experience. Further details of the
original study are altered and optimized. Last, we discussed using lightweight
biometric sensors over fMRI and why joint research with those two tools is
indispensable.
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